Ⅴ 利用研究等の事例

1 利用研究

2008年度は、4本の県有ビームラインを用い、III 章で述べたように93件(1,760時間)の利用実験の 支援を行った。利用分野の分布(利用時間数の割合) を図1に示す。広い分野で放射光が利用されており、 各分野で利用研究の事例が報告されている。

図1 利用分野の分布

ここでは利用研究の事例として、III 章の表 3 に 示す利用区分のうち、ナノテク利用、共同研究、整 備チーム利用、および地域戦略利用において、様々 な利用分野や実験手法の特長を示す観点から5 件紹 介する。

上記の利用事例のうち1件について2009年3月25日 に株式会社日立製作所により以下の通り新聞発表が 行われた。

[標題]

高エネルギーのX線を用いた「屈折コントラストX 線 CT 法」により、信号ケーブルの内部構造を可視 化

[共同発表者]

株式会社日立製作所

大学共同利用機関法人高エネルギー加速器研究機構

国立大学法人筑波大学

日立電線株式会社

財団法人佐賀県地域産業支援センター

九州シンクロトロン光研究センター

[発表の概要]

密度の低い有機材料を高感度で可視化するために 用いられている「屈折コントラストX線CT法」を、 密度の高い金属材料に対しても透過力の強い高エネ ルギーのX線に対応させることで、大きく密度が異 なる材料で構成される製品を破壊することなく観察 することを可能にした。

なお、上記の利用研究事例を含めて利用に関する 成果は、XI 章 出版物、論文発表等に、タイトル、 所属、氏名等をまとめて記載している。

(1) 超ナノ微結晶ダイヤモンド/アモルファスカーボン混相膜の NEXAFSおよびXPSによる化学結合構造の評価

文部科学省 先端研究施設共用イノベーション創出事業交付金

吉武 剛 九州大学大学院総合理工学研究院

近年、直径10 nm以下のダイヤモンド結晶からなる 集合体 (ダイヤモンド微結晶の間には水素化アモルフ ァスカーボンが存在する)の超ナノ微結晶ダイヤモン ド(UNCD)/水素化アモルファスカーボン(a-C:H)混相 膜が、物理的および工業的に注目を集めている。 UNCD/a-C:H膜の成長は、単結晶・多結晶ダイヤモン ドの研究の延長として、ほとんどが化学気相成長 (CVD)法によって行われてきた。それに対して、我々 はこれまでの研究で、直径約5 nmの無数のダイヤモ ンド結晶が水素化アモルファスカーボン (a-C:H)マ トリックスに存在するUNCD/a-C:H膜の成長にPLD 法を用いて成功している。

UNCD/a-C:H膜の特徴としては、a) ダイヤモンド ライクカーボン (DLC) 同様に異種基板への成長が 可能であること、b) 多結晶ダイヤモンドとは対照的 に平滑な膜を有すること、c) 高い温度安定性、d) 膜 中に内在する無数のUNCDの粒界により、大きな光吸 収係数が発現すること¹⁾やn型化がNドープで容易に 実現できること等が挙げられる。UNCD/a-C:H膜は複 雑な構造を有するが、特に膜中にUNCD結晶の結晶表 面が多く内在することが特徴である。結晶表面はダン グリングボンドを有しており、これらの結合状態の具 合によりダイヤモンドのバンドギャップ間に新たな エネルギー準位が発現することが理論的に予測され ている。特徴d) はこのことに因ると考えられる。結 晶粒界を含めた膜の微細構造は大変興味深い。今回、 膜内部の化学結合構造を明らかにするため吸収端近 傍X線吸収細構造 (NEXAFS)、光電子分光(XPS)、 フーリエ変換赤外分光 (FTIR) で評価を行った。

UNCD/a-C膜はレーザーアブレーション法により 作製した¹。化学結合構造を相対的に比較するために、 基板温度550 ℃、真空中でアモルファスカーボン(a-C) 膜を、基板温度が室温で水素圧力53.3 Paで水素化ア モルファスカーボン(a-C:H)膜を作製した。BL12にて、 吸収端近傍X線吸収微細構造(NEXAFS)とX線光電子 分光(XPS)の測定を行った。NEXAFSに関しては、炭

図 1 (a) UNCD/a-C:H 膜、(b) a-C 膜、(c) a-C:H 膜の C1s 光電子分光スペクトル

素の吸収端を考慮して測定範囲を280~330 eVとし、 全電子収量法(TEY)で測定した。XPSに関しては、炭 素の結合エネルギー(285 eV)を考慮して、入射エネル ギーを350 eVとして測定を行った。

XPS測定の結果²⁾を図1に示す。測定されたスペク トルはShirley法によりバックグラウンドを差し引い た後、Voigt関数によりピーク分離を行った。XPS測 定は、膜表面に極めて敏感なスペクトル計測であり、 表面近傍(1~2 nm)の膜構造を反映する。ピーク分離 より、sp³、sp²に起因するピークに加え、286.5 eV付 近にC-O、C-O-Cピーク、289 eV付近にC=O、COOH ピークが観測された。これらのピークはArイオンス パッタリングにより直ちに消滅することから、膜表面 に付着した不純物であると考えられる。ピーク面積か ら算出したsp³(sp² + sp³)はa-C、a-C:Hではそれぞれ 66%、61%であったのに対し、UNCD/a-C:H膜では

図 2 (a) UNCD/a-C:H 膜、(b) a-C 膜、(c) a-C:H 膜の NEXAFS スペクトル

68%と最も高い値をとった²。また半値全幅に関して はa-C、a-C:Hで1.04 eV、1.06 eVであるのに対し、 UNCD/a-C:H膜は0.96 eVと最も小さな値になること がわかった。これらのことは、膜中に無数存在する UNCD結晶に起因すると考えられる。UNCD結晶の 内部はsp³結合100%でありUNCD結晶の存在はsp³の 割合増加に大きく寄与する。また、UNCD結晶の内部 はsp³結合が正四面体構造を形成するように並んでお り、ランダムなアモルファス中のsp³結合より規則的 に配列している。規則的な配列はフェルミ準位付近の バンド構造の広がりを小さくし、XPSピークの半値全 幅を小さくすると考えられる。

図2に3つの試料のNEXAFSスペクトル³⁾を示す。 測定範囲は280~330 eVとし、330 eVの値でスペクト ル強度を規格化した。スペクトルはstep関数でバック グラウンドを差し引いたのち、以下のルールに従い Gaussian関数でフィッティングを行った²⁾:i) ピー クプロファイルは大まかに波動関数に対応する。似 通った3つの試料の間では大きく変化しないと考えら れるので、ピークプロファイルを固定した;ii) それ ぞれのピーク位置は主に結合の距離により変化する。 似通った3試料間では大きく変化しないと考えられる ので、各ピーク位置は3試料間で同じとした。

フィッティングの結果、それぞれ $\pi^*C=C$ 、 σ^*C-H 、 $\pi^*C=C$ 、 σ^*C-C 、 $\sigma^*C=C$ 、 $\sigma^*C=C$ の結合に起因する ピークに分離された。a-C膜では $\pi^*C=C$ ピークが他の2 サンプルと比べて明らかにブロードになっているこ とが分かる。2つのピークが重なっていると考え $\pi^*C=C$ ピークは2つに分離した。ボンド長が異なる結 合が混在している可能性が高い。

UNCD/a-C:H 膜とa-C 膜を比較すると、まず UNCD/a-C:H膜では $\sigma^*C=C$ ピークが弱まりa-Cには ない σ^*C -H結合が現れた。これはUNCD/a-C:H膜中 の $\sigma^*C=C$ の一部が水素化されることによって σ^*C -H 結合に置き換わったことによるものである。また UNCD/a-C:H膜には大きな σ^*C -Cピークが見られ、 このピークは σ^*C -Hと $\pi^*C=C$ と比べて相対的に大き くなっている。この関係は他の2サンプルには見られ ない特徴である。

その他、3サンプルを比較して次のようなことが分

かった:a) 基板温度550 °Cで成長したUNCD/a-C:H 膜とa-C膜では、室温で成長したa-C:H膜と比べて強 いπ*、σ*C=Cピークが観測された。堆積温度の上昇に よりC=Cの結合割合が増えたことが分かる;b) a-C:H 膜では、σ*C-Hとσ*C-Cピークがπ*、σ*C=Cピーク と比べて大きくなっている。これは室温で成長した a-C:HがUNCD/a-C:H膜中に含まれるa-C:Hよりも多 く水素を含んでいること、およびアモルファス膜中で は室温でC=C結合よりむしろσ*C-C結合を形成しや すいことを表している。

膜中の水素原子の状態CH_n (n = 1 ~ 3) を調べるた めに行ったFTIR測定²⁾ では、UNCD/a-C:H膜が波数 2900 cm[¬]付近で他とは明らかに異なるプロファイル を示した。ピーク分離による解析の結果、強いsp³-CH ピークに因ることがわかった。無数のUNCD結晶に よって生じた粒界が水素で終端されていることを示 唆していると考えられる。

この他、UNCD/a-C:HはBドープによりp型化しか つ電気伝導度も大幅に増加する結果を得ており⁴、そ のドーピング機構を明らかにするために膜の化学結 合構造の評価を進めている。NEXAFS測定で、Bドー プ量の増加にともない粒界中の水素に起因する **σ*C-H**結合が減少する結果を得た。ボロン原子は粒界 中の水素もしくはダングリングボンド終端の水素の 一部と置き換わったと考えられる。

Nドープによるn型化および電気伝導度の大幅な増加も得られており、その起源を解明するため、化学結合構造の評価を進めている⁵⁾。XPS測定から、ドープされたNはUNCD結晶間の粒界に集まっている可能性が高い。

産業応用に適する同軸型アークプラズマガンでの UNCD/a-C:H膜の創製を試み成功した^{6,7)}。UNCD結 晶が生成していることの確認を、BL15でのX線回折で 行った⁶⁾。硬度23 GPa、ヤング弾性率184 GPaの機械 特性を得ている。機械特性と化学結合構造との相関を 詳細に調べ、機械特性を決定づける因子を調査中であ る⁸⁾。

参考文献

[1] T. Yoshitake, et al., "Spectral absorption proper-

ties of ultrananocrystalline diamond/amorphous carbon composite thin films prepared by pulsed laser deposition", Jpn. J. Appl. Phys. Part 2, **46**, pp. L936 - L938 (2007).

- [2] T. Yoshitake, et al., "Near-edge X-ray absorption fine-structure, X-ray photoemission, Fourier transfer infrared spectroscopies of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films", Jpn. J. Appl. Phys. 48, 020222 (2009).
- [3] S. Ohmagari, et al., "Near-edge X-ray absorption fine-structure of ultrananocrystalline diamond/amorphous carbon films prepared by pulsed laser deposition", J. Nanomater. 2009 876561 (2009).
- [4] S. Ohmagari, et al., "Formation of p-Type Semiconducting Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films by Boron Doping", Jpn. J. Appl. Phys. in press
- [5] S. Al-Riyami, et al., "X-ray Photoemission Spectroscopy of Nitrogen-Doped UNCD /a-C:H Films Prepared by Pulse Laser Deposition", Diamond Rel. Mater. in press
- [6] T. Yoshitake, et al., "Structural and physical characteristics of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films deposited using a coaxial arc-plasma gun", Jpn. J. Appl. Phys. 49, 015503 (2010).
- [7] K. Hanada, et al., "Time-Resolved Spectroscopic Observation of Deposition Processes of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films by Using a Coaxial Arc Plasma Gun", Jpn. J. Appl. Phys., to be published
- [8] Y. Nakagawa, et al., "Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Films Prepared by a Coaxial Arc Plasma Gun", Mater. Sci. Forum 638-642, 2927-2932 (2010).

(2) 屈折コントラストX線イメージング法による有機材料の観察

米山 明男、¹隅谷 和嗣、²山崎 孝則、上田 和浩、¹平井 康晴
 (株)日立製作所基礎研究所、¹九州シンクロトロン光研究センター、
 ²日立電線(株)技術本部技術研究所

1. はじめに

屈折コントラストX線イメージング法(DEI: Diffraction Enhanced Imaging)は、X線がサンプル を透過する際に生じたX線の進行方向の僅かなずれを 画像化する手法で、吸収による強度変化を画像化する 従来の手法に比べて軽元素に対して10倍以上高感度 である。このため、短い測定時間で高精細に有機材料 や生体試料等を観察することができる。本研究では、 上記イメージング法により電線の絶縁材料である発 泡ポリマーの観察を行い、材料評価への適用可能性に ついて検討を行った。

2. 屈折コントラストX線イメージング法(DEI)の原理

空間的に密度が不均一なサンプルをX線が透過する と、屈折によりX線の進行方向が*d*θだけ変化する。*d*θ はサンプルによって生じるX線の位相シフト*p*の空間 的な微分*dpl dx*の関数として

$$d\theta = \frac{\lambda}{2\pi} \frac{dp}{dx}$$

で与えられる。ここで、 λ はX線の波長である。した がって、 $d\theta$ を検出し積分することによって、位相シ フトp(密度に比例)を求めることができる。

dθ は一般に数μrad程度と非常に小さいため、単結 晶によるX線の回折などを利用して検出する必要があ る。図1に示すようにサンプルの下流に単結晶(アナ

図 1 DEI の原理。アナライザー結晶による回折 X 線の強度変化から *d*・を検出する

ライザー結晶)を設置し、X線の入射角 θ_A をブラッグ 角 θ_B から極僅かだけ低角の θ_L あるいは高角の θ_H に設 定する。 $d\theta$ が0における回折X線の強度をIrとする と、 θ_A が θ_L の場合、 $d\theta$ >0ではIrが増加し、逆に $d\theta$ < 0では減少することになる(θ_A が θ_H の場合は、Irの 増減が反対になる)。したがって、回折X線の強度変 化から $d\theta$ を求めることができる[1]。しかし、 θ_A が1 点だけでは回折X線の強度変化が $d\theta$ の変化によるも のか、サンプルの吸収によるものか区別することがで きない。このため、一般にはアナライザー結晶を θ_B の 近傍で回転させ、複数の角度で取得した強度から $d\theta$ を計算により求める[2]。

3. イメージングシステム

図2に本観察に使用したイメージングシステムの概要 を示す。本システムは、非対称結晶、サンプルホルダー、 アナライザー結晶、二次元画像検出器から主に構成され る。システムに入射した放射光は、非対称結晶で縦方向 に拡大されたのち、サンプルホルダーによって保持され たサンプルに入射する。サンプルを透過したX線は、ア ナライザー結晶で回折され、画像検出器で*d*の分布像 として検出される。観察視野は最大で横40 mm、縦10 mm である。

非対称結晶には非対称度が8.5度の表面にメカノケ ミカル研磨を施したSi (220)の結晶を用いた。X線のエネ ルギーが13.4 keVの場合、縦方向の拡大率は11倍であ

図2 イメージングシステムの概要。非対称結晶、サン プルホルダー、アナライザー結晶、検出器から構成。

る。アナライザー結晶にはSi (220)の対称結晶を用い、タ ンジェンシャルバーを用いた回転精度1/100秒のゴニオ メータにより高精度にθ₄の制御を行った。サンプルは水 平方向から保持する構成とし、Computed Tomography (CT)による3次元断層撮影では、サンプルを水平に回転 させるようにした。2次元の画像検出器として、蛍光体に Gd₂O₂Sを使用したレンズカップリングのCCDカメラを用 いた。画素数は1300×1000、実効ピクセルサイズは20 μm、転送レートは6 frame/secである。

4. イメージング結果

上記システムをBL-15に設置し、エネルギー13.4 keV のX線を用いて、電線の絶縁材料である発泡ポリマーの 三次元観察を行った。その結果を図3に示す。X線のエ ネルギーが比較的低いために、銅線等を取り除き、ポリ マー単体で観察を行った。アナライザー結晶のスキャン 数は19、CTのプロジェクション数は200、1枚の回折像の 露光時間は3秒、合計の測定時間は4時間である。この 結果から、内部の気泡を非常に鮮明に可視化できてい ることがわかる [3]。

図4(a)には図3のスライス断面像を、(b)には同一線量 の従来法によって得られた同一の断面像を示す。(a)で は大きさ100 µm程度の気泡まで可視化でき、また、輪郭 も鮮明で気泡のサイズ等の解析も可能と考えられる。一 方、(b)ではX線のエネルギーが比較的低いために気泡 の外形を捉えることはできるが、輪郭がぼやけており、定 量的な解析の適用は難しいと考えられる。両画像のS/N を計算した結果、(a)は40であるのに対して、(b)では5程

図3 発泡ポリマーの3次元ボリュームレンダリン グ像。 度であった。従って、今回使用したシステムの条件では、 DEIの感度は従来法に比べては8倍程度高いと考えられる。

(a)
 (b) ² mm
 図 4 (a) 本手法による発泡ポリマーの断面像、
 (b) 従来法による同一サンプルの同一断面像

5. まとめ

屈折コントラストX線イメージング法を用いて高分 子材料(発泡ポリマー)の観察を試みた。この結果、 高精細な三次元像の取得に成功し、本手法がポリマー を含めた有機材料の評価に有効であることがわかっ た。今後は、発泡ポリマーの構造と電気的な特性との 関連について評価を行うと同時に、各種有機材料への 適用を試みる予定である。

参考文献

[1] T. J. Davis *et al.*, Nature 373, 595 (1995).

[2] I. Koyama *et al.*, Jap. J. Appl. Phys. 44, 8219 (2005).

[3] 米山明男他, 第3回九州シンクロトロン光研究センター研究成果報告会,60 (2009).

(株)日立製作所 基礎研究所 米山 明男 **栗崎、敏, 迫川、泰行, 脇田、久伸**、福岡大学理学部

1. 序論

水溶液中の金属イオンや金属錯体などの立体構造 や電子構造を明らかにするために、X線吸収分光法 がしばし用いられている 1)。しかしながら、一般に 軽元素のXANES スペクトルは軟X線を用いるため 測定試料を超高真空下(1x10⁻⁶ Torr 以下)で測定する 必要がある。そのため、生体試料や水溶液中の軽元 素の XANES スペクトル測定は非常に困難である。 これまで、Wilson²⁾や Aziz³⁾らにより溶液中の軽金 属の軟X線XANESスペクトル測定が行われている。 しかしながら、これらの方法では温度、圧力などの 物理条件を変化させた測定や、生体試料などの真空 下におけない試料の測定は困難である。このような 測定を行うには試料周りが大気圧であることが望ま れる。そこで本研究では、新たに開発した生体試料 用の新規溶液セルシステムを用い塩化ナトリウム水 溶液の Na-K XANES スペクトル測定を行う。得ら れた結果を DV-Xa 分子軌道法を用いて解析し水溶 液中のナトリウムイオンの溶存構造解析をおこない、 今回作製した溶液セルシステムの性能評価を行う。

2. 実験

2-1 軟X線分光スペクトル測定システムの開発

今回開発した溶液セルシステムの構成を Fig. 1 に示す。本装置の特徴は、軽元素の XANES スペク トルを大気圧下で測定可能な点である。また、この 溶液セルは7軸の可動試料ステージを有しており生 体試料のイメージング測定にも対応可能である。

本装置の光路内の圧力は、真空ポンプを使って約 1.0×10⁻⁷Torr に保つようにしている。その真空パス の末端 (コリメータ先端) には窒化ケイ素(Si₃N₄) 薄 膜 の 窓 を 有 し た ケ イ 素 基 盤 (Fabrication Services & Technology Ltd.) を Torr Seal を用いて 固定している。ケイ素基盤の大きさは 5mm 四方で 厚みは 381µm である。その中央に位置する窓の大

図1 溶液セルシステムの構成図

きさは 1.5mm 四方で厚みは 150nm である。 真空パ スの末端から試料ステージの全体は、アクリルとア ルマイト製のケースで覆われている。 これにより、 ケース内の空気を He ガスに置き換えることが出来 る。

2-2 XANES スペクトル測定

測定試料の塩化ナトリウム(和光純薬 特級試薬) は精製せずそのまま使用した。塩化ナトリウムの粉 末を蒸留水に溶かし 5.0M 水溶液を調製した。低濃 度溶液は 5.0M 水溶液を蒸留水で希釈し調製した。 水溶液試料の測定は室温で溶液セルシステムを用い て蛍光法で行った。試料測定の際には、溶液セルシ ステムのケース内にヘリウムガスを流し、ケース全 体を暗幕で覆った。測定は Na K XANES スペクト ルを 1065~1085eV の範囲で、0.2~0.5eV の間隔で、 各測定点を 3 回積算し行った。

3. 結果と考察

図2に溶液セルシステムを用いて測定した、約 1.0~5.0 Mの濃度の NaCl 水溶液の Na K XANES スペクトルを示す。得られたスペクトルは粉末試料 の XANES スペクトルと形状が異なっており、今回 作製した溶液セルシステムは水溶液中の軽元素の XANES スペクトル測定が可能であることが示され た。また、1.0~5.0M までの濃度で有意な XANES スペクトルが得られ、現状において本システムを用

図2 各濃度で測定した塩化ナトリウム水溶液の Na K XANES スペクトル

いた際のナトリウムイオンの検出下限は約 1.0M で あることが示された。

1.0~5.0 M の NaCl 水溶液の XANES スペクト ルを比較すると2.5~5.0M まではXANES スペクト ルの形状やピーク位置に大きな変化は観測されてい ない。しかしながら、1.0M の場合得られた XANES スペクトルは他の XANES スペクトルと比較してピ ーク位置や形状が異なっている。濃度変化により Na K XANES スペクトルが変化することは E. F. Aziz らによっても報告されている³⁾。Aziz らは、 ドイツ・ベルリンの放射光施設 BESSY-II を用いて、 NaCl 水溶液の Na K XANES スペクトルの測定を 行い、測定試料の濃度が薄くなるにつれメインピー クが 2本から3本に分裂しピークシフトが生じると 報告している。一方、われわれの測定結果は、濃度 が 1.0M のときにメインピークが 3本に分裂してお り Aziz らの結果と同様の結果が得られた。

そこでこの濃度変化による XANES スペクトルの 形状変化の原因を明らかにするために水溶液中のナ トリウムイオンの溶存化学種として報告されている [Na(H₂O)₄]+モデルと [Na(H₂O)₆]+モデルを用いて DV-Xa 分子軌道計算法を用いて、塩化ナトリウム水 溶液中の Na-K XANES スペクトルの解析を行った。 [Na(H₂O)₄]+モデルを用いた理論スペクトルはすべ ての濃度範囲において実測スペクトルを十分には再 現しなかった。一方、[Na(H₂O)₆]+ モデルを用いた 理論スペクトルは 5.0-2.5M の実測スペクトルを再 現していないが、1.0M の実測スペクトルのピーク 位置や形状をほぼ再現している。そこで2つのモデ ルの存在比を変化させた混合スペクトルを作成し 2.5M と 1.0M の実測スペクトルとの比較を行った (図 3)。得られた混合スペクトルは[Na(H₂O)₆]+モデ ルの存在比が高くなるにつれて、1082 eV 付近のピ ークが徐々に増加し、1080 eV 付近のピークが低エ ネルギー側にシフトしている。また、1074 と 1077 eV 付近の2本のピークは1075 eV 付近の1本のピ ークに変化している。その結果、[Na(H₂O)₄]+モデル と[Na(H₂O₆]+モデルの比が0.5:0.5 近辺では比較的 2.5M の実測スペクトルのピーク位置を再現してい る。一方、[Na(H₂O)₆]+モデルの存在比が[Na(H₂O)₄]+ のモデルの存在比より高くなった場合には1.0M の 実測スペクトルを良く再現している。

これらの結果から、水溶液中では[Na(H₂O₄)]+と [Na(H₂O)₆]+の二つの錯体種が平衡状態で存在し、高 濃度溶液では[Na(H₂O)₄]+の濃度が増加する方に平 衡が傾き、低濃度になると[Na(H₂O)₆]+が主成分とな る方向に平衡が傾くことが明らかとなった。

参考文献

- [1] T. Kurisaki et al., Ancl. Sci., **24**, 1385 (2008)
- [2] K. R. Wilson et al., J. Phys. Chem., B105, 3346 (2001)
- [3] E. F. Aziz et al., J. Chem. Phys. 124, 114502 (2006)

(4) 有田焼の発色メカニズムの解明と新規発色性陶磁器の開発

文部科学省放射線利用・原子力基盤技術試験研究推進交付金

白石 敦則、吉田 秀治、寺崎 信、勝木 宏昭 佐賀県窯業技術センター

1. はじめに

有田焼をはじめとする佐賀県陶磁器の発色技術は、 江戸時代初期から中期に経験則として高度に確立さ れた。しかし、これらの発色技術は職人の試行錯誤 による製造技術を基にしたものであり、高度な分析 機器による科学的な検証はほとんどなされていない。 陶磁器の発色メカニズムを科学的に解明することに より、任意に陶磁器の発色を安定して再現すること が可能となると考えられる。また、発色メカニズム 解明によって新たな陶磁器の発色技術を創造する可 能性があり、陶磁器に新規発色による付加価値を付 与することが期待できる。本研究では、シンクロト ロン光を利用して陶磁器の発色メカニズムの解明を 目的として行なった。陶磁器の発色材には古くから 遷移金属が利用されているが、代表的な発色材であ る鉄は釉薬や下絵付け、上絵付けの発色材として広 く用いられ、焼成条件やガス雰囲気などにより赤、 黄、緑、青、黒等の様々な色を示す。この中でも、 酸化鉄を釉薬に添加して発色させた青磁釉は代表的 な色釉の一つで、釉の組成や焼成条件(還元濃度、 温度、時間)によって青色、暗緑色、黄緑色・・・ 等に発色が大きく変化する(図1)。

図1 青磁釉の発色変化の例

青磁釉の発色は、釉(ガラス)中に含まれる鉄が 発色を呈している。従って今回の実験では、焼成時 の還元ガス濃度の変化や基礎釉の変化による青磁釉 の発色変化と青磁の発色源である鉄の状態変化(価 数変化、隣接原子間距離等)の関連を調べることに した。

2. 実験方法

表1に示す4種類の組成(ゼーゲル式)の基礎釉 にFe2O3を2wt%添加させ青磁試験用釉薬を作製した。

MG	0.3(K2O Na2O) 0.4CaO 0.3MgO 0.5Al2O3 5SiO2
CA	0.3(K2O Na2O) 0.7CaO 0.5Al2O3 5SiO2
SR	0.3(K2O Na2O) 0.7SrO 0.5Al2O3 5SiO2
BA	0.3(K2O Na2O) 0.7BaO 0.5Al2O3 5SiO2

表1 青磁試験用基礎釉組成

これらの釉薬を素焼き陶板にそれぞれ施釉し、ガ ス炉によって、還元ガス濃度を変化させ1300℃焼成 を行い、評価用青磁試料を作製した。また、この青 磁試験用釉薬をるつぼに入れ、上記の評価用青磁試 料同様に1300℃焼成し、これを粉砕して軟X線測定 用の釉試料(ガラス粉末)を作製した。

これら試料を用い、青磁の発色に影響を及ぼして いる Fe の状態を調べるため九州シンクロトロン光 研究センター (SAGA-LS) で XAFS 測定を行った。

青磁釉試料の Fe K-edge の XAFS 測定(Lytle 検 出器使用)は陶板形状の青磁釉試料を用い行った。 また、ガラス粉末状の青磁釉試料を用い Fe の L3-edge の XAFS 測定を行った。

XAFS測定データ解析はリガク製のXAFS解析ソ フトウェアーREX2000を用いて行った。

3. 結果と考察

3-1 発色変化

今回の測定では、表1に示した組成のタルク釉 (MG)、石灰釉(CA)、バリウム釉(BA)、ストロン チウム釉の青磁釉試料(SR)を用いた。これら試料全 て、焼成時の還元ガス濃度が高くなることで黄色→ 青色に変色した。

また、基礎釉のアルカリ土類金属を変化させた場 合、アルカリ土類成分である Mg,Ca,Sr,Ba と原子量 が大きくなるほど、青磁釉の発色が黄緑→青に変化 した。

3-2 Fe K-edge XANES

(1) 還元ガス濃度の影響

図2にCA釉を用い焼成時の還元ガス濃度を変化 させて作製した青磁釉試料および標準物質の高純度 Fe2O3、FeO 試料のFe K-edge XANES パターンを 示す。これから焼成時の還元ガス濃度が高い試料の 方が、Fe K-edge XANES の立ち上がりが低エネル ギー側にわずかにシフトしている事がわかる。

これは、焼成時の還元ガス濃度が高い試料(より 青い釉)が、鉄の2価の状態(FeO)に近くなって いることを示す。また、他の3種類の基礎釉試料 (MG釉、SR釉、BA釉)でも同じ傾向であった。 さらにCA釉を用い、焼成時の還元ガス濃度を変化 させて作製した青磁釉試料中の鉄のK端のEXAFS 測定の解析結果から、焼成時の還元ガス濃度が高い 試料(より青い釉)の方が隣接原子数(酸素と仮定 した場合)が減少する傾向を示した(Fe2O3→FeO)。 従って、同一組成の青磁釉の場合は、一般的に言わ れている「青磁釉中の鉄の一部は、焼成時の還元ガ ス濃度が大きくなる事によって価数が3価から2価 に変化する。これによって青磁釉の発色が黄色から 青(緑)色に変化する。」ことを XAFS 測定でも確 認することができた。

(2) 基礎釉組成の影響

基礎釉組成の変化によっても青磁釉の発色は大き く異なる。これは基礎釉の違いによる鉄の価数変化 が起きていることや、鉄原子の周りの構造の変化に よって鉄の 3d 軌道のエネルギー準位差に変化が起 き、光の吸収波長が異なるため¹⁾等が言われている。 そこで、基礎釉組成の違いによる青磁釉中の鉄の状 態変化を XAFS 測定によって調べた。

図3に基礎釉を変化させて作製した青磁釉中の鉄 のK端のXAFS (XANES)測定結果を示す。この 結果から、より青色が強い試料(BA 釉)が鉄の XANES の立ち上がりが高エネルギー側にシフトし ており、鉄の価数が3価(Fe2O3)により近くなって いる。これは前述の同一組成青磁釉で還元ガス濃度 を変化させた場合(より青色を呈する試料の方が鉄 のXANESの立ち上がりが低エネルギー側にシフト する)と逆の結果になった。従って、基礎釉の違い による青磁釉の発色の変化(黄緑色→青緑色)は、 鉄の価数変化だけの影響ではないと思われる。今後、 これら試料の鉄のK端のEXAFS測定を行い、デー

図3 基礎釉の変化による青磁釉の XANES 結果 (還元ガス濃度 上; 0.2%, 下; 2%)

タ解析によって鉄原子と隣接原子の原子間距離の変 化等を調査し、色変化との関係を調べる予定である。

3-3 Fe L3-edge XANES

図1の結果から焼成時の還元ガス濃度変化により、 Fe K-edge XANES の立ち上がりが低エネルギー側 にわずかにシフトし、鉄の価数が変化している事が わかったが、この事をより明確に証明するため、よ り鉄の 3d 電子の状態が反映される Fe L3-edge XANES を測定した。

図4に同一種類の釉で焼成時の還元ガス濃度を変 化させた試料(CA 釉)の Fe L3-edge XANES パター ンを示す。

これから還元ガス濃度が高い試料が約 707eV の 吸収ピークが大きくなっているのに対し、酸化焼成 の試料は、約 709eV の吸収ピークが大きくなってい る。このエネルギーの変化と発色変化の関連性を今 後確認して、鉄の価数等の状態変化との関連性を調 べていく予定である。

図 4 Fe L3-edge XANES 測定結果 (還元ガス濃度の影響)

4. まとめ

同一の釉組成の場合、青磁釉は焼成時の還元ガス 濃度が大きくなる事によって発色が黄色→青(緑) 色に変化する。XAFS 測定の結果から青磁釉中の鉄 は焼成時の還元ガス濃度が大きくなることによって 価数が3価から2価に変化していると考えられる。 これが青磁釉発色の変化要因と推察される。

一方、青磁釉(基礎釉)のアルカリ土類金属を変 化させた場合は青磁釉中のアルカリ土類金属の原子 量が大きくなるに従い、発色が黄緑色→青緑色に変 化する。XAFS 測定の結果から、青磁釉の発色は発 色源である鉄のただ単なる価数変化のみが発色を支 配しているのではないという結果になった。

青磁釉の色変化の要因として、鉄原子の周りの構 造変化が起因している可能性があるため、今後、こ れらを XAFS 測定によって解析し、青磁釉の発色変 化と鉄の状態変化の関連性を調べる予定である。

5. 謝辞

今回の研究を進めるにあたり、九州シンクロトロ ン光研究センター副所長の平井氏、グループ長の岡 島氏、研究員の石地氏、瀬戸山氏、隅谷氏をはじめ 九州シンクロトロン光センターの職員の方々には、 多大なご指導、ご協力を頂きました。御礼申し上げ ます。

参考文献

[1] 高嶋廣夫、陶磁器釉の科学

(5) 茶におけるシンクロトロン光の利用法に関する研究 文部科学省放射線利用・原子力基盤技術試験研究推進交付金

明石 真幸、 宮崎 秀雄 佐賀県茶業試験場

1. はじめに

シンクロトロン光の利用により非破壊での無機元 素分析や、これまで困難であった各部位における元素 の分布を把握することが可能であるが、茶や果樹など の永年作物において、シンクロトロン光の利用はほと んどされていないのが現状である。そこで、シンクロ トロン光の特性を活用した蛍光X線分析法による、 「茶」の新しい評価技術について検討した。

2. 材料および方法

2-1 供試試料

佐賀県内3産地(嬉野市、武雄市、唐津市)の品評 会出品茶(2008年度、蒸し製玉緑茶、品種は'やぶき た')を供試した(n=11)。

2-2 蛍光X線分析試料の作成

荒茶サンプルをサイクロンミル (UDY) で粉砕し、
 200mgを精秤した後、錠剤成型器(日本分光)を用いて数種の整形条件で錠剤化した¹⁾(図1)。

図1 試料作成方法

2-3 シンクロトロン光を利用した蛍光X線分析

SAGA-LSビームライン(BL15)において、試料に シンクロトロン光(12keV)を300秒間照射し、発生 する蛍光X線をSiマルチカソードX線検出器(試料と 検出器の距離は15mm)で検出した(図2)。

図2 蛍光X線分析の様子

2-4 ICP 発光分光分析(ICP-AES)

粉砕試料0.5gを秤量し、マイクロ波分解装置
 (Multiwave3000)で酸分解後、乾固させ、硝酸0.5mL
 に溶解し水で10mLに定容した。その後、ICP-AES装置
 (Optima4300D)で無機成分を定量した¹⁾。

3. 結果

3-1 試料作成条件が蛍光X線分析結果に与える影響

同一の荒茶サンプルを用いて、錠剤化時、加圧力お よび処理時間を変化させて分析試料を作成し(表1)、 蛍光X線分析を行った結果、得られた蛍光X線スペク トルに有意な差は認められなかった(図3)。

表 1	試料作成条件		
条件	加圧力(MPa)	処理時間(min)	成形後厚さ(mm)
1	20	10	1.927
2	20	10	1.927
3	20	10	1.927
4	20	10	1.938
5	20	10	1.933
6	20	10	1.936
7	30	10	1.930
8	30	5	1.944
9	40	10	1.933
10	40	5	1.936

図3 分析の再現性および試料作成条件の影響

3-2 茶の蛍光X線スペクトル

それぞれの荒茶サンプルにおいて、1keV-12keVの 範囲で蛍光X線を検出した結果、7元素(K、Ca、Mn、 Fe、Ni、CuおよびZn)の蛍光X線スペクトルを検出 した(図4)。K、Mnで高いピークが得られ、特に Mnについては、試料間の差が大きかった。

3-3 蛍光X線分析とICP-AES分析の比較

蛍光X線分析とICP-AES分析の分析値の相関関係 は元素によって異なり、4元素(Mn、Fe、Ni、Cu) については1%水準で、Caについては5%水準で有意な 正の相関が認められた。K、Znについては有意な相関 は認められなかった(表2)。

表2	蛍光X線分析とICP-AES分析による分析値の相関	(n=11)
	诺 Ψ X 線 分 析 值	

	元素	K-Ka	Ca-Ka	Mn-Ka	Fe-Ka	Ni-Ka	Cu-Ka	Zn-Kα
	Κ	0.15	0.13	0.41	0.45	0.05	0.00	0.25
I	Ca	0.10	0.72*	0.26	0.26	0.43	0.42	0.27
C	Mn	0.43	0.15	0.93**	0.30	0.26	0.36	0.49
	Fe	0.10	0.02	-0.06	0.87^{**}	0.35	0.31	0.32
万析	Ni	0.60	0.58	0.33	0.22	0.97^{**}	0.68*	0.68*
値	Cu	0.10	0.19	0.18	0.08	0.48	0.92**	0.16
	Zn	0.26	0.15	0.16	-0.11	0.73*	0.59	0.48
(汁)	-) *1+50/ **1+10/水準で左音でなることを主す							

注)*は5%、**は1%水準で有意であることを表す。

3-4 蛍光X線分析による原産地判別

蛍光X線分析によって得られた7元素の分析値を説 明変数とし、産地の異なる3群(嬉野市、武雄市、唐 津市)の試料について判別分析を行った結果、明瞭に 判別が可能であった²⁾(図5)。

図5 蛍光X線分析による佐賀県内茶産地の判別結果

5. まとめ

シンクロトロン光を利用した茶の蛍光X線分析では、 分析時に酸処理等の必要が無く、測定が比較的簡便か つ短時間に行えることから、原産地判別や品質評価へ の利用が期待される。本試験では、シンクロトロン光 を利用した蛍光X線分析とICP-AES分析の測定値か ら、測定方法の違いによる特徴が確認されており、分 析値の取り扱いについては検討を要する。

今後は、茶の品質・成分について、現在行われてい る官能審査および各種分析との比較を行い、シンクロ トロン光を用いた新しい品質評価技術を確立したい。

参考文献

[1] 明石ら:茶業研究報告,108(別).134~135.2009
[2] 宮崎ら:日本食品科学工学会西日本支部等合同学 会要旨集,81.2009

2 試験研究

当研究センターの 2008 年度の試験研究について 報告する。

1. 研究テーマ等

1-1 放射線利用·原子力基盤技術試験研究推進事業

2007年度から、佐賀県が、文部科学省の放射線利 用・原子力基盤技術試験研究推進事業を受託事業と して実施しているが、その1つである試験研究事業 の中の、シンクロトロン光利用技術の研究について は、県から当研究センターに再委託がなされた。

実施されたテーマを表1に示す。

テーマ名	主体
X 線利用計測技術高度化のため	ビームライン
の試験研究	グループ
軟 X 線利用計測技術高度化のた	ビームライン
めの試験研究	グループ
電子蓄積リング最適化・高度化の	加速器
ための試験研究	グループ

表1研究テーマ

1-2 科学研究費補助金

研究センターは、2006年度から、科学研究費補 助金取扱規程による学術研究機関の指定を受けてお り、研究員は科学研究費補助金の応募が可能である。 2008年度の補助金交付決定分は表2のとおり。

表2 補助金交付決定を受けた研究

研究種目	研究課題名	研究代表者
若手研究 B	多電子相関解析で探	金安達夫
	る原子分子の多重電	
	離ダイナミクス	

2. テクニカルレポート

研究等により新たな知見が得られた場合、テクニ カルレポートとして研究員から報告を受けることに なっている。

報告件数は2008年度は2件であった。

表3 テクニカルレポート一覧

内容	報告者	
放射光干渉計によるビームサイ	高林 雄一	
ズ測定		
白色 X 線トポグラフィーの立ち	石地 耕太朗	
上げ・デモ実験	川戸 清爾	