

課題番号:070722N

(様式第4号)

# Fe 酸化物の XAFS 測定と小角散乱測定 Measurements of XAFS and SAXS for iron oxides

# 古曵重美,下岡弘和,岡田浩一,河原克則 Shigemi Kohiki, Hirokazu Shimooka, Koichi Okada, Kastunori Kawahara

# 九州工業大学 Kyusyu Institute of Technology

#### 1. 概要

ITO 中に存在する In 置換 Fe<sub>3</sub>O<sub>4</sub> ナノ粒子の局所構造を調べるため、Fe ドープ ITO (Fe@ITO)薄膜試料の Fe K 吸収端 XAFS を測定した。 また、Fe<sub>3</sub>O<sub>4</sub> ナノ粒子のサイズ分布を評価するため、上記 Fe@ITO 薄膜試料について SAXS を測定した。

# (English)

Measurement of XAFS on the Fe K edge was carried out to investigate fine structure of In-substituted  $Fe_3O_4$  nanoparticles in Fe@ITO thin films.

SAXS was also measured to examine size distribution of the nanoparticles in the films.

## 2. 背景と研究目的:

我々はこれまでに室温強磁性を示す Fe ドー プ ITO (Fe@ITO)を実現した<sup>1,2)</sup>。TEM による構 造解析から、Fe@ITO は ITO マトリックス中に Fe<sub>3</sub>O<sub>4</sub> ナノ粒子が分散配置されたものであるこ とが明らかになっている<sup>3)</sup>。

2006 年 7 月に Fe@ITO の FeK 吸収端を測定 し、XANES スペクトルから Fe<sub>3</sub>O<sub>4</sub>の存在を確 認した。動径分布関数から Fe<sub>3</sub>O<sub>4</sub> ナノ粒子の局 所構造はバルク結晶に比べて緩和しているこ とが分かった<sup>4)</sup>。一方、TEM より、Fe<sub>3</sub>O<sub>4</sub>ナノ 粒子を構成している Fe<sub>3</sub>O<sub>4</sub>単位胞の Fe サイトの 一部が Fe@ITO のマトリックスを構成する In で置換されている可能性があることがわかっ た。In が Fe サイトを置換した Fe<sub>3</sub>O<sub>4</sub>ナノ粒子 の局所構造はFe@ITOの磁気特性や電気特性に 影響を与える可能性がある。そこでまず、Fe 濃度および熱処理条件を変えて Fe<sub>3</sub>O<sub>4</sub>に対する In の置換量を変化させた Fe@ITO を作製し、こ れについて FeK 吸収端を測定することを考え た。これにより、In 置換量を変化させた Fe<sub>3</sub>O<sub>4</sub> 中の Fe 周りの局所構造について知見が得られ ると期待した。

もちろん、 $Fe_3O_4$  ナノ粒子のサイズやその分 布状態も Fe@ITO の特性に大きく影響する。そ こで、X 線小角散乱法 (SAXS)を用いて粒子の サイズとその分布の評価を試みた。

# 3. 実験内容:

# <u>XAFS 測定</u>:

**Fe@ITO** 粉末および **Fe@ITO** 薄膜について測 定を行った。

粉末の場合、重量比でおよそ Fe@ITO: BN = 1:10 となるように Fe@ITO と BN を混合後、ペ レット状に成形し試料を準備した。透過および 蛍光配置でこの試料の FeK端 XAFS の測定を行 った。

薄膜の場合、透過および蛍光配置で FeK 端の XAFS を測定した。この膜は YSZ 基板上に堆積 しているため、透過配置では基板によって入射 光がほとんど吸収されること、および蛍光配置 では信号の SN 比が小さいことが午前中の実験 で明らかになった。従って、その後は蛍光配置 を採用し、SN 比を向上させるために条件をそ ろえた測定を繰り返し行い、データを蓄積し た。

#### <u>SAXS</u> 測定:

Fe@ITO 薄膜について測定を行った。反射配 置を採用した。入射光のエネルギーは 7 keV ( $\lambda$  = 1.77 Å)で、入射角は膜表面に対して 0.2°で ある。カメラ長は 190 cm である。また、参照 データをとるため基板のみの反射配置 SAXS も測定した。

## 4. 結果、および、考察:

## XAFS (Fe@ITO 粉末)

透過配置と蛍光配置の両者において、検出された信号の SN 比は小さく、明瞭なエッジジャン プや EXAFS 振動は見られなかった。これは試料 中の Fe 濃度が非常に希薄であったことが原因と 考えられる。

#### XAFS (Fe@ITO 薄膜)

SN 比を向上させるため、条件をそろえた測定 を繰り返し行い、蓄積させたデータを平均化し た。しかし、図 1 に示すようにエッジジャンプ は小さく、SN 比も十分であるとは言い難い。ま た、求めた Fe 周りの動径分布関数は、去年の測 定で得られた Fe@ITO 粉末のものと比較しても、 大きく異なっていた。やはり、更なる SN 比の改 善が必要である。



2006年7月、Fe@ITO 粉末の XAFS 測定を転換 電子収量法で行い、SN 比が十分に大きく、明瞭 なエッジジャンプおよび EXAFS 振動をもった スペクトルを得ることができた。今回の結果か ら、Fe 濃度が希薄な試料の XAFS を測定する場 合、転換電子収量法が有効であることが分かっ

## SAXS (Fe@ITO 薄膜)

YSZ 基板のみの場合における信号強度は、 Fe@ITO/YSZの場合のそれに比べると1/100程度 であり、Fe@ITO/YSZのSAXS信号にYSZ基板 は殆ど寄与しないことがわかった。

Fe@ITO 膜は、ITO 膜の中に Fe<sub>3</sub>O<sub>4</sub> ナノ粒子が 分散配置された構造をもつことがわかってい る。SAXS スペクトルの解析から見積もられた、 Fe<sub>3</sub>O<sub>4</sub> ナノ粒子の平均サイズは~10 nm であった。 さらに、この粒子サイズと磁気特性から粒子密 度を見積もると  $2x10^{10}$ /cm<sup>2</sup> であった。従って、平 均粒子間隔は 70 nm と求められた。この値は、 スピン拡散長を議論するうえで非常に重要な情 報である。

## 5. 今後の課題:

**Fe@ITO** 膜の Fe 濃度は希薄である。従って、 FeK 端の XAFS スペクトルを得るために、転換電 子収量法を用いた測定を行うことが今後の必須 課題である。

ITO/YSZ の反射型 SAXS を測定することを考 えている。ITO 膜からの寄与を差し引けば、より 精度の高い粒子サイズや粒子密度の情報を得ら れると思われる。

## 6. 論文発表状況·特許状況

#### 7. 参考文献

- 1) S. Kohiki et al, Jpn. J. Appl. Phys. 44 (2005) L979
- 2) T. Ohno et al, Jpn. J. Appl. Phys. 45 (2006) L975
- 3) K. Okada et al, Jpn. J. Appl. Phys. 46 (2007) L823
- 4) 九州シンクロトロン光研究センター, 平成 18
  年度研究成果報告会実施報告書 (2006) 71

#### 8. キーワード

#### ITO (Indium Tin Oxide):

ITOは  $In_2O_3$ に不純物として Sn をドープすることで得られる、バンドギャップおよび低効率 (室温)がそれぞれ~3.5eV、~ $10^4 \Omega$ cm の透明導電体である。透明電極材料として広く普及している。

 $Fe_3O_4$ :

 $Fe_3O_4$ は逆スピネル構造をもつフェリ磁性体で ある。電気的特長としては、ハーフメタリックな 電子構造に起因したスピン偏極キャリヤーを有 し、低効率は室温で~ $10^4$  Ωcm を示す。

#### スピン拡散長:

強磁性体 (FM)と非磁性半導体 (NMS)を接続 し、FM から NMS へ電流を流すことを考える。 FM から放出されたスピン偏極したキャリヤーが NMS へと注入されると、キャリヤーはスピンの 情報を保ちながら NMS 中を伝導していき、やが て非磁性の平衡状態へ緩和し、そのスピン情報を 失う。このスピン情報を失うまでの距離をスピン 拡散長と呼ぶ。