

九州シンクロトロン光研究センター 県有ビームライン利用報告書

課題番号:1012004AC

(様式第4号)

軟 X 線吸収分光法による水和 DNA 分子薄膜の研究(III) NEXAFS spectroscopy of hydrated DNA thin films by soft X-rays (III)

藤井健太郎 Kentaro FUJII

独立行政法人 日本原子力研究開発機構 Japan Atomic Energy Agency

※長期利用課題は、実施課題名の末尾に期を表す(I)、(Ⅱ)、(Ⅲ)を追記すること。

1. 概要

水和による DNA の電子状態の変化を観測するため、真空容器内で加熱することに よって乾燥させた DNA および、その表面上に水を吸着させた薄膜の光電子および軟 X 線吸収スペクトルを測定した。

(English)

To compare the electronic structure of hydrated DNA, we observed the photo-electron spectra and X-ray absorption spectra of dried and hydrated DNA films, which were prepared by heating the sample in vacuum and then exposed to water vapor.

2. 背景と研究目的:

これまでに我々は単色軟 X 線の照射によって DNA 中に生成する DNA 主鎖切断や塩基損傷といった 各種分子変異の定量を行い、窒素および酸素 K 殻イオン化によって遺伝子である塩基部位や DNA 主鎖 の切断が顕著に増加すること、さらに塩基の種類によって誘発頻度が照射エネルギーによって変化す ることを明らかにした[1-3]。そしてこれらの損傷の誘発に、DNA 分子に強固に結合した水和水分子 のイオン化後の電荷移動が深く関わっていると推測されている[1-3]。しかし、その損傷生成過程の 詳細なメカニズムは明らかになっていない。そのため、単色軟 X 線の照射した水和 DNA 分子について 化学結合を反映した電子状態の詳細を知ることは、その反応過程の詳細を知る上で必要不可欠であ る。そこで、本課題では単色軟 X 線の照射した時の水和或いは未水和 DNA に関して軟 X 線吸収スペク トル測定を行い、生化学実験の結果との比較より DNA 損傷の誘発に水和水分子がどのように寄与して いるかを明らかにする。平成 22 年度に行った長期課題により、DNA 薄膜や粉末試料の軟 X 線吸収ス ペクトルの測定を行い、マクロな DNA の形態の違いによる軟 X 線吸収スペクトルの違いが観測された。 しかし、これらの変化が水和によるものかどうかは明らかになっていない。

本課題では、DNA に強固に吸着した水和水分子が電子状態変化にどのように寄与しているかを明ら かにすることが狙いである。そのため、真空中で水和 DNA と未水和 DNA を再現する必要がある。そこ で、熱処理あるいは低温に冷却した DNA に対して、当該ビームラインで現在開発中の高感度な全蛍光 収量測定装置と全電子収量測定装置を用い、DNA の表面およびバルク敏感な軟 X 線吸収スペクトルの 同時測定を行った。

3. 実験内容(試料、実験方法の説明)

試料は仔牛胸腺DNA (Calf Thymus DNA)を用い、表1のような条件で薄膜を作成した。光電子スペクトルは、C 1s、N 1s および 0 1sスペクトルのピーク位置及び強度比に着目して測定した。軟X線吸収スペクトルは、P2p、C1s、N1sおよび01s吸収端近傍のスペクトルを測定した。試料は、サンプルバンクホルダーに設置されたヒーターにより加熱した。温度は、サンプルバンク裏面の熱電対でモニターした。加熱処理は最初に150℃で15分間、その後に180℃、200℃、220℃それぞれ15分間加熱し、加熱前後の軟X線吸収スペクトルを測定した。一方、水和したDNA薄膜は、180℃15分間の真空中での加熱後、試料をおよそ-100℃に冷却し、真空チャンバー内に水を暴露して作成した。試料基板は基板の法線が放射光の入射に対して0°(直入射条件)に配置した。

試料	仔牛胸腺 DNA
形状	薄膜
製造元	Sigma (D-1501)
作成方法	1mg/mL 水溶液 300µL を基板
	(30mm x30mm)上に滴下後大気
	中で自然乾燥。乾燥後に基板を
	10mm x 10mm に切断
基板	Si(100) (10mm x 10mm)
膜厚	~300nm

表1

4. 実験結果と考察

(1) 乾燥 DNA 薄膜の実験結果

加熱前後でのリンL殻、炭素K殻、窒素K殻および酸素K殻の吸収端(NEXAFS)スペクトルを 図1、図2、図3および図4に示す。図中に示した吸収端近傍の共鳴ピークの帰属は、K. Kummerら [4]の報告を元に行った。図1のリンL殻NEXAFSスペクトルにおいて、試料の加熱温度が上昇する につれて各ピーク構造の減少が確認された。また、220℃の加熱により、スペクルのピーク位置が変 化した。これらは DNA 主鎖のリン酸エステル結合の切断によって生じた変化であると推測される。 図2の炭素K殻NEXAFSスペクトルでは、180℃の加熱によって水和水の脱離によるものと推測され る 288eV 付近のピークの消失が見られた。また、220℃の加熱により熱分解によるものと思われる 286. 278 および 290eV のピークの減少が見られた。窒素 K 殻 NEXAFS スペクトル(図 3)では、220℃の 加熱により熱分解によるものと思われる 399eV 付近のπ*共鳴ピーク強度の減少が確認された。また、 図 4 の酸素 K 殻 NEXAFS スペクトルでは、220℃の加熱によって熱分解によるものと思われる 533, 544eV 付近のピークの減少が見られた。以上の結果から、1)180℃の加熱では水和水分子の脱離が起 こる。2)220℃ではモノマー分子自身が分解している。ことが推測される。また、オフライン実験に おいて、各々の DNA 薄膜についてのイオン化ポテンシャルを測定したところ、加熱によりイオン化 ポテンシャルが 0.4~0.6eV 程度高エネルギー側にシフトすることが明らかになった。イオン化ポテン シャルは表面の状態に影響を受けるので、加熱により DNA 薄膜に吸着した水や膜中の分子が脱離や 分解したため変化したと思われる.現在,NEXAFS スペクトルの結果と比較し,DNA 分子と水との 相互作用や加熱による分子の分解メカニズムについて解析中である。

図 6 水和による DNA 薄膜の酸素 K 殻 NEXAFS スペクトル変化

5. 今後の課題:

DNA 薄膜の膜厚や水和水の量に対する定量的なデータの取得により、水和による電子状態変化の定量的な評価を行うことができると期待される。また、加熱による DNA 分子構造の変化を定量的に解析する必要がある。

6. 論文発表状況·特許状況

未定

7. 参考文献

[1] A. Yokoya, K. Fujii, N. Shikazono, and M. Ukai, Charged Particle and Photon Interactions with Matter -Recent Advances, Applications, and Interfaces, ed. by Y. Hatano, Y. Katsumura, A. Mozumder, Taylor &

Francis, Boca Raton Chapter 20 543-574 (2010).

[2] K. Fujii, et al., J. Phys. Chem. B, 113 16007-16015 (2009).

[3] K. Fujii, A. Yokoya, and N. Shikazono, Int. J. Radiat. Biol. 84 1104-1111 (2008).

[4] K. Kummer, et al., J. Phys. Chem. B, 114 9645-9652 (2010).

[5]M. Ukai, A. Yokoya, Y. Nonaka, K. Fujii, and Y. Saitoh, Radiat. Phys. Chem. 78 1202-1206 (2009).

8. キーワード(試料及び実験方法を特定する用語を2~3)

・軟X線吸収スペクトル(X線吸収端近傍微細構造(NEXAFS)スペクトル)

X線の吸収が起こるとき、一部が物質に吸収される。入射X線のエネルギーを変化させて、X線の 吸収率を測定すると、あるエネルギーで吸収率が急激に変化する部分がある。この部分を吸収端と呼 び、吸収端近傍の吸収スペクトルをNEXAFS(Near Edge X-ray Absorption Fine Structure)と呼び、こ の部分の解析から、物質中の特定元素の電子構造に関する情報が得られる。