

九州シンクロトロン光研究センター 県有ビームライン利用報告書

課題番号:1208081R

BL番号: BL07、BL11

(様式第5号)

ナノサイズ空孔欠陥の導入による熱電材料改質 Modification of thermoelectric materials by introduction of nano-scale vacancy clusters

坂本 寛¹、大塚 哲平²、橋爪 健一² Kan SAKAMOTO, Teppei OTSUKA, Kenichi HASHIZUME

1:日本核燃料開発㈱、2:九州大学 1: Nippon Nuclear Fuel Development, 2: Kyushu University

1. 概要

ナノサイズ空孔欠陥の導入によりセラミクス熱電材料を改質する方法を模索するため、予備試験として空孔欠陥生成に必要な添加元素の固溶を XANES 測定により確認できるかを調べた。鉄もしくはニオブを混合したジルコニアの追加測定から、添加元素の 固溶を XANES 測定で確認できることが確認された。

(English)

To establish the method of modification of the thermoelectric ceramics by introduction of nano-scale vacancy clusters, the XANES measurements were examined as the method to confirm the dissolution of additive elements that is required to introduction of the vacancy. The additional measurements with iron or niobium mixed zirconia proved the capability of XANES measurements for confirmation of dissolution of additive elements.

2. 背景と目的

熱電材料の性能向上には、電気伝導度の向上と熱伝導度の抑制が求められる。高温安定性に優れる セラミクス材料は、材料マトリクス内に積極的に空孔欠陥を導入し、その空孔欠陥のサブナノ~ナノ サイズ構造を制御することで、高温安定性を担保しながら効果的にフォノン散乱を増加させ、格子熱 伝導率を低減することが可能ではないかと期待される。このような観点からナノサイズ空孔欠陥の導 入によりセラミクス熱電材料を改質する方法を模索している。空孔欠陥を導入する方法はいくつか挙 げられるが、本研究では価数の異なる元素を固溶させることで酸素空孔欠陥を導入する方法を採用し ている。前実験では、予備試験として元素の固溶がXANES測定で確認できるのかを検証するため、 高温で焼結した鉄もしくはニオブ添加ジルコニアを用いたXANES測定を実施した。その結果、 XANES測定により固溶が確認できる可能性が示唆されたが、より確実な検証として同一濃度の混合 材を用いる試験が必要であることが明らかとなった。

本試験では、このような背景から焼結前の混合試料を用いた同様のXANES測定を行い、その結果 を前試験と直接比較することで、添加元素の固溶をXANES測定から判断できるのかを検証した。

3. 実験内容(試料、実験方法、解析方法の説明)

ボールミル混合法でZrO₂粉末に表1に示す割合のFe₂O₃もしくはNb₂O₅を均一に分散させた。なお、 表1には比較のため、前報告で示した焼結後の試験片についての情報も示している。各試料は、導電 性カーボンテープ上に均一に粉末を分散させてFe K吸収端(鉄混合試料)及びNb K吸収端(ニオブ 混合試料)でのXANES測定(転換電子収量法)をそれぞれBL11、BL07で行った。

4. 実験結果と考察

XANES 測定結果を図1(ZrO₂-Fe₂O₃ 試料)、図2(ZrO₂-Nb₂O₅ 試料)に示している。 ZrO₂-Fe₂O₃ 試料については、図1(a)で示すように、混合試料では Fe₂O₃ と同一の XANES スペクト ルが得られた。ただし、最も濃度の低い ZrO₂-0.2wt.%Fe₂O₃ 試料は解析可能な XANES スペクトルが

得られなかったため、同図には含めていない。一方、前報告で示した焼結試料の XANES スペクトル では、ZrO₂-0.5wt.%Fe₂O₃ 試料で混合試料と異なるスペクトルが得られた。図1(c)には、 ZrO₂-0.5wt.%Fe₂O₃ 試料について混合試料と焼結試料を直接比較しているが、焼結試料では図中の A のみにピークが見られるが、混合試料ではA、B、Cの全てにピークが見られている。吸収端エネル ギーには差が見られないことから、焼結処理により鉄の価数(+3)は変化しないが、周辺原子の種類 や配置が変化したものと推測される。すなわち、鉄がジルコニアに固溶したため、スペクトル形状が 変化したものと推測される。

ZrO,-Nb,O,試料については、図2(a)で示すように、混合試料ではNb,O,と同一のXANESスペクトル が得られた。一方、前報告で示した焼結試料のXANESスペクトルでは、いずれの試料も混合試料と 異なるスペクトルが得られた。図1(c)には、ZrO2-1wt.%Nb2O5試料について混合試料と焼結試料を直 接比較しているが、焼結試料では図中のAのみにピークが見られるが、混合試料ではA、B両者にピー クが見られている。吸収端エネルギーには差が見られないことから、焼結処理によりニオブの価数 (+5)は変化しないが、周辺原子の種類や配置が変化したものと推測される。ただし、前報で報告し たXRD測定結果から判断すると、XANESスペクトル変化からは、ニオブがジルコニアマトリクス中 に固溶した場合と、Zr_aNb₂O₁₇と推定される化合物となる場合の識別は容易でないと思われる。ニオ ブの場合には、本焼結手法、雰囲気では固溶によるXANESスペクトル変化は確認できるが、一部が Zr₆Nb₂O₁₇と推定される化合物に変化しても判別かつかないため、注意が必要であることが明らかと なった。

5. 今後の課題

第一原理計算によりスペクトル形状の変化の理論的考察を行う。また、ニオブについては他の価数 (例:+3) で固溶させる焼結条件を見出し、酸素空孔欠陥が生成できる条件を整える。

6. 参考文献

K. Sakamoto, K. Une, M. Aomi, K. Hashizume, "Depth profile of chemical states of alloying elements in oxide layer of Zr-based alloys", Progress in Nuclear Energy, 57 (2012) 101-105

7. 論文発表・特許

1. J. Matsunaga et al., "Helium Bubbles in UO₂", Extended abstract of 1st. ANFC, 1st. Asian Nuclear Fuel Conference, Osaka, Japan, March 22-23, 2012, S5-3, p64-65.

2. K. Sakamoto et al., "Effect of Vacancy Defects on Diffusion Behavior of Hydrogen in Oxide Layer of Zr-based Alloys", Extended abstract of 1st. ANFC, 1st. Asian Nuclear Fuel Conference, Osaka, Japan, March 22-23, 2012, PS-20, p106-107.

8. キーワード

熱電材料、空孔欠陥、固溶

- 9. 研究成果公開について
 - 論文(査読付)発表の報告
 (報告時期:2013年9月)

ZrO ₂ -Fe ₂ O ₃ 混合試料 0.2、0.5、2、5 ZrO ₂ -Nb ₂ O ₅ 混合試料 1、2.5、5、20 ZrO ₂ -Fe ₂ O ₃ 焼結試料 (前報告) 0.2、0.5、2、5 ZrO ₂ -Fe ₂ O ₃ 焼結試料 (前報告) 0.2、0.5、2、5 ZrO ₂ -Nb ₂ O ₅ 焼結試料 (前報告) 1、2.5、5、20 1、2.5、5、20 1wt.%Nbでは全て単斜晶ジルコニアのピークが混在。 1、2.5、5、20 2.5wt.%Nb以上ではZr ₆ Nb ₂ O ₁₇ と推定される化合 物のピークが混在。		組成(金属wt.%)	XRD測定結果
ZrO ₂ -Nb ₂ O ₅ 混合試料 1、2.5、5、20 ZrO ₂ -Fe ₂ O ₃ 焼結試料 (前報告) 0.2、0.5、2、5 0.2、0.5wt.%Feでは全て単斜晶ジルコニアのピークが混在。 ZrO ₂ -Nb ₂ O ₅ 焼結試料 (前報告) 1、2.5、5、20 0.2、0.5wt.%Feでは全て単斜晶ジルコニアのピークが混在。 1、2.5、5、20 1wt.%Nbでは全て単斜晶ジルコニアのピーク。 2.5wt.%Nb以上ではZr ₆ Nb ₂ O ₁₇ と推定される化合物のピークが混在。	ZrO ₂ -Fe ₂ O ₃ 混合試料	0.2, 0.5, 2, 5	
ZrO ₂ -Fe ₂ O ₃ 焼結試料 (前報告) 0.2、0.5、2、5 0.2、0.5wt.%Feでは全て単斜晶ジルコニアのピークが混在。 ZrO ₂ -Nb ₂ O ₅ 焼結試料 (前報告) 1、2.5、5、20 1wt.%Nbでは全て単斜晶ジルコニアのピーク。 2.5wt.%Nb以上ではZr ₆ Nb ₂ O ₁₇ と推定される化合物のピークが混在。	ZrO ₂ -Nb ₂ O ₅ 混合試料	1、2.5、5、20	
ZrO ₂ -Nb ₂ O ₅ 焼結試料 (前報告) 1、2.5、5、20 1wt.%Nbでは全て単斜晶ジルコニアのピーク。 1、2.5、5、20 2.5wt.%Nb以上ではZr ₆ Nb ₂ O ₁₇ と推定される化合物のピークが混在。	ZrO ₂ -Fe ₂ O ₃ 焼結試料 (前報告)	0.2、0.5、2、5	0.2、0.5wt.%Fe では全て単斜晶ジルコニアのピーク。2wt.%Fe以上ではFe ₂ O ₃ のピークが混在。
	ZrO ₂ -Nb ₂ O ₅ 焼結試料 (前報告)	1、2.5、5、20	1wt.%Nb では全て単斜晶ジルコニアのピーク。 2.5wt.%Nb 以上では Zr ₆ Nb ₂ O ₁₇ と推定される化合 物のピークが混在。

表1 XANES測定を行った混合試料の組成およびXRD結果

