

課題番号:071280C

(別紙様式2)

実施課題名 Te_{0.4}Se_{0.6}単結晶を用いた X 線異常分散効果測定

English X-ray anomalous dispersion on diffraction of Te_{0.4}Se_{0.6} single crystal

著者氏名 副島 雄児

English Yuji Soejima

著者所属 九州大学

English Kyushu University

1.概要

Te_{0.4}Se_{0.6}の a×2、b×9、c×2 長周期構造における構造解析から得られている Te と Se の占有率分布に関して、X 線異常分散効果、X 線共鳴散乱法によって局所構造に関する情報 を検出する。これから、Te と Se の占有率分布の起源となる物理的原因を探り、また、この 長周期構造が空間的・時間的な平均構造ではなく、局所的に存在する構造であることを突き 止める。

(English)

According to structure determination of long periodic structure consists of a $\times 2$, $b \times 9$, $c \times 2$ in Te_{0.4}Se_{0.6}, local structure determination has been done using X-ray anomalous dispersion effect and resonant scattering. The present aims are to fine physical property of the longer structure and to confirm the statistic existence of the structure in local crystal field.

2.背景と研究目的:

Te _{0.4} Se _{0.6} は常温・常圧で単結晶として準安定的に	3. 実験内容:
存在し、これまでに平均構造の構造解析がなされ	通常の回折実験の手法を用いるが、ソフトウェア
ている。申請者らはこれまでの短波長回折実験に	ーQ による回折強度測定について波長走査測定を
おける測定で、a×2、b×9、c×2 の超格子につい	中心として I(E)測定を実施した。具体的な測定内
て Te と Se のサイト占有率を変数とした構造解析	容は次のとおりである。
で R 因子 8%の構造を得ている。この結果から Te	(1)光学系調整(ビーム位置確認・ゴニオメータ位
占有率の b 軸へ変調が 9 倍の超格子形成の原因に	(1)23 (1)2 (1) (1)2 (1)2 (1)2 (1)2 (1)2 (1)2
なっていることを明らかにし、超格子回折に現わ	
れる X 線異常分散効果が占有率の変調構造に矛盾	(2)Se K 吸収端(0.97974 : 12.6540 keV)におけ
しないことを突き止めている。	ろ基本格子回折強度測定(K吸収端+100eV) 回
当研究では SAGA-LS BL15 の高質ビームを利用し	転ポラロイド写直等光学系の基本動作チェック
て、(1)Te _{0.4} Se _{0.6} の超格子回折に見られる Se の X	(3)Se K 吸収端(0 97974 · 12 6540 keV)におけ
線異常分散効果の定量的検出、(2)基本格子回折に	(0)00 K ()(1000) (0.000)
見られる Seの X線異常分散効果の定量的検出と吸	(4) 土 唱 散 刮 調 杏 (K 吸 収 端 + 50eV)
収端における DAFS(回折異常微細構造)測定、	(3)については次のエネルギー(eV)について回折
(3)SeのK吸収端50eV以内における共鳴散乱の出	強度測定を実施した。
現の有無の確認、を目的とする。	12450 12550 12640 12650 12660 12670 Se K 吸収

Fig.1 Energy dependence of peak profiles around Se K absorption edge.

Fig.3 Energy dependence of integrated intensity as a function of incident energy around Se K absorption edge. 基本格子回折強度を入射 X 線のエネルギーの関数 として測定した。Fig.1 に回折プロファイルを規 格化して示した。Fig.2 には回折強度の相対強度 変化を比較できる形で示した。Fig.1 から回折プ ロファイルが波長依存をほとんど示さないこと、 Se K 吸収端の前後で相対的に異常分散効果による バックグラウンドが変化していることがわかる。 Fig.2 から回折強度に見られる吸収係数の変化が 明確に見られる。

回折積分強度のエネルギー依存性をFig.3に示した。Se K吸収端での吸収効果が顕著に見られることがわかるが、高エネルギー側での測定点が不足しているためDAFSは検出されていない。これらの測定データについては吸収補正を行い、二乗構造因子 | F|²を求めることによってTe_{0.4}Se_{0.6}の長周期構造に関する知見を得ることができる。

5. 今後の課題:

Se K 吸収端の高エネルギー側の詳細な測定を行う ことによって DAFS の検出を行う必要がある。ま た、今回は時間の制約によって共鳴散乱の有無に ついて測定を行うことができなかった。これら 2 点について、追実験を行うことによって、これま でに構造解析によって得ている Te_{0.4}Se_{0.6}の長周期 構造について、長周期構造出現の物理的原因につ いて言及できることが期待される。

6.論文発表状況・特許状況

これまでの研究成果に加え、当研究課題によって 得られた知見、および追加実験によって Te_{0.4}Se_{0.6} の長周期構造に関する起源を解明した後論文を投 稿する予定である。

7.参考文献

Soejima Y. & Fischer K.F., (1988) Z.Krystallogr. 184. 71-85.
Soejima Y., (1988) Z.Krystallogr. 184. 87-101.
Soejima Y., Yamasaki K. & Fischer K.F., (1997)

Acta Cryst. **B53**, 415-419.

• Yamasaki K., Soejima Y. & Fischer K.F., (1998) Acta Cryst. **B54**, 524-530.

• Toda T., Nogami T., Yamasaki K. & Soejima Y.,(1998) *J. Appl. Cryst.* **31**, 423-429.

• Soejima Y. & Kuwajima S.,(1999) *Proceedings* of Jpn. MRS Symposium, **24**, 687-690.

• Sugiyama M., Kuwajima S., Soejima Y., Nakamura

A., Hiramatsu N., Kikukawa T., Suzuki A. & Hara

K., (1999) Jpn. J. Appl. Phys. 38. L1360-1362.

• Kuwajima S., Soejima Y., Sugiyama M., Hara K.,

Nakamura A., Hiromatsu N., Annaka M., Kikukawa T. & Suzuki A., (2000) Proceedings of Jpn. MRS Symposium, 25, 747-750. • Soejima Y., Kuwajima S., Sugiyama M., Annaka M., Nakamura A., Hiramatsu N. & Hara K., (2003) J. Phys. Soc. Jpn. 72, 2110-2113. • Sugiyama M., Soejima Y., Hara K., Takei F., Itoh K., Mori K. and Fukunaga T., (2005) Trans. Mat. Res. Soc. Jpn. 30, 855-858. ・副島雄児、X線異常分散効果を用いた超格子・ 不整合構造解析 (1999) 固体物理(アグネ技術セ ンタ-) Vol.34, 540-548. ・副島雄児、X線異常分散法を用いた超格子構造・ 長周期構造解析(2006)日本結晶学会誌 48 48 - 53. 8.キーワード X線異常分散効果 物質をX線で照射したときに、物質を構成する特 定の原子の内殻軌道の電子の強制振動および励起 放出によって、誘導放出によるX線の分散(等方的 なバックグランドの上昇)と X 線吸収の増加がみ られる現象のこと。 • DAFS 物質をX線で照射したときに、物質を構成する特 定の原子の内殻軌道の励起放出電子が隣接する原 子によって散乱を受け、放出電子と散乱電子によ って生じる吸収係数が照射 X 線のエネルギー依存 を持つ振動を示す現象。EXAFS と同等の現象であ るが、回折強度に現われるこの現象は特定の結晶 軸方位への特性を示すため、Diffraction Anomalous Fine Structure と呼ばれている。 X線共鳴散乱 物質をX線で照射したときに、物質を構成する特 定の原子の内殻軌道の電子の強制振動および励起 放出によって、結晶構造因子テンソルの非対角成 分が有限の値をもち、本来消滅している回折点に 回折強度が出現する現象。共鳴散乱強度によって 注目する元素の結晶場ポテンシャルの異法方性を 検討することが可能となる。