マイクロX線イメージングによる木材組織観察と樹種同定:文化財への適応

百島則幸¹, 芦川信雄¹, 田籠久也¹, 米山明男² ¹九州環境管理協会, ² SAGA-LS

1. はじめに

加工や入手の容易さからわが国では様々な種類の 木材を利用してきた。生活に関わる利用のみならず、 神社仏閣や仏像などの文化財への利用も多い。文化財 的価値の高い建物、仏像などでは、使用されている木 材の樹種は基本情報であるが、必ずしも明らかではな い。文化財から樹種同定に必要な試料を得ることは文 化財保護の観点から一般的には困難であり、歴史的、 地域文化的、芸術的観点から樹種同定の要望が高いに も関わらず実施できないことが多い。

樹種同定法として顕微鏡で樹木組織を3軸方向の面 (木口面、柾目面、板目面、図1)で観察する手法が 広く利用されている^[1,2]。顕微鏡切片の作製にはある 程度の大きさの木片が必要となるので文化財への適 応は限られている。一方で、ごく少量の試料で樹木組 織の観察ができるマイクロX線イメージングは文化財

図1 木材の断面図

に使用されている樹種を知る有力な手段である[3-4]。

本研究の目的は、マイクロX線イメージングによる 樹種同定法を福岡県内の神社境内に配置されている 古い建造物である摂末社から入手したごく少量の木 片試料へ適応し、使用されている木材の種類を明らか にすることである。

2. 実験

2-1 試料

(1) 樹種が既知の試料

SAGA-LSで利用できる最大分解能のマイクロX線 イメージングの測定可能な大きさは2x2x2 mm 程度 である^[6]。測定条件と解析条件を決めるために、ヒノ キ、クスノキ、ケヤキの木片から円柱試料(直径2 mm、 長さ4 cm)を作製した。円柱試料の軸方向が幹の軸 方向になるように年輪を確認しながら内径2 mm の ドリルで抜き出した。抜き出した円柱試料の外縁部分 は、ドリルの回転方向に組織が変形していることが後 の解析で明らかになった。

(2) 摂末社の試料

2019 年 7 月に神社境内にある 2 つの摂末社の部材 から、数 mm 程度の大きさの木片試料を入手した。 測定用試料にカッターで削り出し中に割れることが 多く、風雨にさらされることで劣化していることが確 認された。割れる方向は年輪に沿った面(幹の軸方向、 図 1)と考えられる。試料を表1に示す。

2-2 実験方法

BL07 第2実験ハッチで単色光(8 keV あるいは9 keV)によるマイクロCTを高分解能X線カメラ(2048 x 2048 ピクセル)で撮影した。試料は幹の軸方向が 上下になるように試料台に固定し、0.36 度毎に試料を 回転させながら、各角度で7秒もしくは10秒の測定 を行った。2048 x 2048 ピクセルの画像は 2 x 2 ピク セルで統合して 1024 x 1024 ピクセルに変換し、1001 枚の回転画像を再構築して X 線吸収強度の分布

(1024x1024x1024 ピクセル)の生データを得た。こ の条件による画像サイズは 2.6 µm/ピクセルとなる。 画像解析には解析ソフト Fiji を利用した。

3. 結果及び考察

3-1 樹種が既知の試料のイメージング画像

図2に針葉樹であるヒノキの木口面のイメージング 画像を示す。横方向には年輪縞(白っぽく見える横線 で、晩夏から秋に成長した細胞の集まり)が観察され る。年輪の間隔から成長率は0.2-0.4 cm/年であると読 み取れる。針葉樹は木口面に仮道管が均一に分布する ことが特徴である。仮道管は一個一個の細胞で、細胞 の横断面すなわち細胞壁が丸く見えている。円柱試料 の外縁部分の仮道管はドリルで抜き出し中に潰れて 変形していることがわかる。

広葉樹であるクスノキとケヤキの木口面には、広葉 樹に特徴的な大きな径の導管と小さい径の道管がま ばらに分布している様子が観察された。板目面及び柾 目面にもそれぞれの樹種に特徴的な組織形態を確認 することができた。この分解能では組織の細部まで見 ることはできないが、広葉樹がもつ導管分布の特徴を 確認できることから広葉樹の同定には十分利用でき ると考えられる。

図2 ヒノキの木口面イメージング画像

3-2 摂末社に使用されている樹種の同定

図3にA末社外壁で彫刻が施されている絵様木鼻か ら入手した試料の木口面イメージング画像を示す。導 管の分布の様子から樹種はクスノキと推定される。

図3 A末社外壁の絵様木鼻に使用されている部材の 木口面イメージング画像

B 末社から入手した絵様木鼻に使用されていた樹 種もクスノキと推定される(図4)。試料上側の断面 部分には木材組織とは明らかに異なる遺物様の残渣 らしきものが白っぽい色で付着していることが確認 される。下側の断面部分には確認されないことから、 虫食いの跡と思われる。試料固定のために巻いた ラップが細い線として外側に見えている。

図4 B末社外壁の絵様木鼻に使用されている部材の 木口面イメージング画像

図5にA末社の内部の柱に使用されていた部材の木 口面イメージング画像を示す。仮道管が均一に分布す る針葉樹の特徴が確認されるが、中央部分や上側の組 織は大きく欠落している。中央部分の欠落面の左側に は異物の付着が見られることから、虫食いと推定され る。右側下部に樹脂道らしき小さい穴が見られること からマツの仲間と推定される。

図 5 A 末社内部の柱に使用されている部材の 木口面イメージング画像

試料部位	組織形態の特徴	推定される
		樹種
A末社内部	針葉樹の仮道管分	針葉樹
柱	布の特徴を示す。軸	マツの仲間
	方向細胞間(樹脂)	
	道がみられる。	
A末社外壁	広葉樹の道管分布	広葉樹
絵様木鼻	の特徴を示す。放射	クスノキ
	組織の幅が数列。	
A末社内部	針葉樹の仮道管分	針葉樹
壁板	布の特徴を示す。	ヒノキの仲
		間
B末社外壁	広葉樹の道管分布	広葉樹
絵様木鼻	の特徴を示す。放射	クスノキ
	組織の幅が数列。	
B末社内部	針葉樹の仮道管分	針葉樹
長押	布の特徴を示す。晩	マツの仲間
	材の仮道管壁が厚	
	く、放射方向細胞間	
	(樹脂) 道らしきも	
	のが見られる	

表1 摂末社から入手した木質試料

4. まとめ

現生の試料のみならず古い木質試料についてもイ

メージング画像による組織形態の観察が可能である ことが確認された。本手法の特徴は任意面の断面画 像を容易に得られることであり、これが樹種同定に おける大きな利点となる。また、イメージング画像 はスタック画像であることから導管や仮道管の空間 分布の特徴を連続画像として捉えることができる。

今回の実験から本手法の適応において考慮すべき 以下の点が明らかになった。

(1)3 軸方向で得られている顕微鏡写真は薄い切 片試料で得られたものでイメージング画像とは本質 的に分解能や色合いが違うので、樹種同定は既知の 樹種のイメージング画像と比較すべきである。

(2) 広葉樹は木口面に観察される導管のサイズや 分布、板目面に観察される放射組織の形態や分布に 特徴性が高く、イメージング画像でそれらの特徴か ら樹種を判別できる可能性が高い。一方、針葉樹は 木口面と板目面で属を判別するための特徴はある程 度は確認できるが、種の同定に有効な組織細部の様 子まで確認することは難しいと考えられる。

参考文献

 IAWA Committee, "IAWA list of microscopic features for hardwood identification", Iawa Journal, 10, 219-332 (1989).

[2] IAWA Committee, "IAWA list of microscopic features for softwood identification", Iawa Journal, 25, 1-70 (2004).

[3] 水野寿弥子、 高瀬克彦、 杉山淳司、"シンクロ トロン放射光X線トモグラフィー(SRX-rayµCT)を用 いた木質文化財の樹種識別"、考古学と自然科学、62、 85-95 (2011).

[4] T. Koddenberg, K. C. Krause, A. Krause, "Tomographic analysis of siliceous particulates in Australian turpentine wood (Syncarpia glomulifera) through X-ray micro-computed tomography", Micron, **117**, 22-28 (2019).

[5] A. Yoneyama, et. al., "Development of High-Resolution X-ray CT System Using Parallel Beam Geometry", AIP Conference Proceedings, **1696**, 020007 (2016).