6 九州大学クリーン実験ステーション（クリーンルーム；九州大学）

1．はじめに

「九州大学クリーン実験ステーション」は，平成 20（2008）年度文部科学省施設整備整備費補助金（大型特別機械整備費）を原資として九州シンクロトロ ン光研究センター内に整備され，平成21（2009）年7月に施設の運用を開始した。九州大学では，本施設 の運転時間の一部を外部，特に産業界に開放するこ とにより地域産業の高度化に貢献することを目的と して同年 11 月より文部科学省「先端研究施設共用促進事業」を開始した。本事業では，地域活性化の ための新産業創出と人材育成を主な使命として，「先端分子技術を核とする九州先端ものづくりセンター の構築」を目標に施設の運用を行った。平成 24（2012）年度は本事業の最終年度で，事業の中間評価を経て，平成 25 年度より文部科学省「先端研究基盤共用・プラットフォーム形成事業」に引き継が れることになった。以下では，平成 24 年度の活動内容と中間評価について概説する。

2．平成 24 年度の活動内容

平成 24 年度の共用促進事業実施課題は，クリー ンルーム内の走査型プローブ顕微鏡に集中した。従来，走査型プローブ頭微鏡の利用においては試料表面のイメージを得ることで測定完了とするのが通常 であるが，本施設では，特に試料のナノスケール物性測定に関してモデル化やコンピュータシミュレー ションを実施することにより，定量的な解析•評価 を目指した。その結果，一般の外注分析会社では解析が困難であった案件を本施設の共用利用のなかで明らかにし，利用者から高く評価され緗続利用へと繋がった事例もある。主な定量解析•評価の内容は以下の通りである。

2－1 走査型マイクロ波顕微鏡（SMM）によるイン ピーダンスの定量測定とその応用

半導体表面層のナノスケールキャリヤ分布は，特 に低濃度領域において，従来の方法では高感度測定 が困難である。国内では本施設のみで共用が可能な SMM は，半導体パワーデバイス等の開発で重要と なる低濃度キヤリヤ分布の測定を可能にするポテン シャルを有しているが，その測定技法を確立するた めには，図1に示す様なモデル化やコンピュータシ ミュレーションが必須で，解析と評価を実施した。得られた成果については，原著論文＂Sensitivity analysis of scanning microwave microscopy for nano－scale dopant measurements in $\mathrm{Si} \mathrm{\prime}$ として国際誌 JOURNAL OF APPLIED PHYSICS 112， 104325 （2012）に公開した。

図1 モデル化とコンピュータシミュレーション

2－2 ケルビンプローブフォース顕微鏡（KFM）によ る仕事関数の定量測定とその応用

金属表面の仕事関数定量測定のために，試料表面前処理法や装置の校正法さらにはデータ処理に工夫 を凝らすことにより，企業における新規高性能力 ソード電極材料の研究開発に利用できることを示し た。図2 は添加物を加えたタングステン材料の表面形状と KFM 像の一例を示す。

Topograply	KDV

図2 添加物と仕事関数の相関

$2-3$ 走査型原子間力顕微鏡（AFM）による機械物性 の定量測定とその応用

AFMナノインデンテーションによる図3に例示す るようなフォースカーブの測定•解析により，試料表面層の硬さ分布に関する定量評価が可能であること を示した。この技法を用いて企業における新規有機無機複合材料の研究開発に貢献した。

図3 AFMナノインデンテーションフォースカーブ

3．中間評価とその結果

文部科学省「先端研究施設共用促進事業」は平成 25年度より「先端研究基盤共用・プラットフォーム形成事業」に発展強化されることに鑑み，中間評価と新事業への緗続審査も兼ねた審査評価会が平成 25 年 1 月末 に文部科学省で開催された。図4に評価結果を示す様 に，産業利用実績や農業•漁業分野への利用拡大につ いては良い評価を得たが，シンクロトロン光施設との連携が十分でないことが問題点として指摘された。

先瑞研究施設共用促進事業 平成24年度中間評価

棫開名	围立大学法人 九州大学	
提素代表者名	本風 理昭	
研容荿致名	九州大学 クリーン実検ステーション	
䉼助事栄名		
事䓦镜要	 るアライアンスコア相枚を中核として，九州大学COE 及びクローバル COEブログ 指し，大学の数育研究機能を接とした自治体との連振による知的センターとして の役語を輁たす。	
辝定$\left[\begin{array}{lll} A & a & c \infty \\ 3 \operatorname{man} \end{array}\right)$	B（一部改着すべき点を有するが，絶蛣に詙する。）	特に優れている点
		本事害の位置付けの有㕮性
		これまでの実栲
コメント	【特に詳価できる点】 －地元の企業と倇力して，産業利用を農業や淮果分野へ摭大しようとしてい る． ［今後の課题］ - 地域の企業や他楾間による共用を更に進めていくことが留まれる。 - 九州シンクロトロン光施杸とクリーン実岈ステーションとの連擐が不十分 であり，胿合施設としての特微を出せていないことから，取相の強化が墅ま れる。 る。 珼在は，本施設ならではの成果にそしく，今後，コーティネート极能の強化を通して，実権するテーマの通切な遣択を行うことなとにより，保青する装道の特権を活かした事童を実施していくための努力が求められる。	

図 4 平成 24 年度中間評価（文科省 HPにて公表）

4．おわりに

平成 24 年度までは，化学，半導体，金属産業分野 における材料の分析•解析が主たる共用促進事業の利用課題であった。平成 25 年度以降は，これらに加えて，農業，漁業分野への新たな展開を図ることにより，今後益々，本施設が産学共同研究や地域産業界からの積極的な利用に供されることを期待している。

九州大学大学院工学研究院
本岡 輝昭

