（3）ダイヤモンド単結晶のX線トポグラフィ一評価

嘉数誠，村上竜一，松永晃和佐賀大学院工学系研究科

1．はじめに

今日の我々の暮らしに必要不可欠なエネルギーは，主に火力，水力，風力，太陽光発電によって作られ，家庭や工場，通信基地など様々なエネルギーに変換さ れ送られている。しかし現在，環境・エネルギー問題 は不可避の深刻な問題となっている。電力•情報通信 ネットワークにおいてエネルギー効率は，電力変換回路の半導体デバイスの材料であるシリコン固有の物性値で決まり，すでに限界に達している。この社会の ネットワークのエネルギー効率を上げるため新しい半導体材料のパワーデバイスの実現が不可欠である。
そこで，我々が目を付けたのがダイヤモンドである。 ダイヤモンドは格子定数 $a=3.65 \AA$ の立方晶系で禁制帯幅5．47eVを有するワイドギャップ半導体材料であ る。ダイヤモンドは高耐圧で超低損失な高電圧デバイ ス用の新しいパワーデバイスとして期待されている。

シリコン他半導体材料との物性値を比較した。（表1参照）ダイヤモンドは他と比べ禁制帯幅，絶縁破壊電界が大きく，電子•正孔共に高い移動度を持っている。こ のような高水準の物性値を持つダイヤモンドの特徴 から様々な応用の可能性を持つている。（表2参照）

しかし，ダイヤモンドのポテンシャルを最大限に発揮できるようにするためには，ダイヤモンドの結晶試料中に内在する結晶欠陥密度を小さくする必要があ る。ダイヤモンドはHPHT法（High Pressure High Temperature）及 び CVD 法（Chemical Vapor Deposition）により単結晶ダイヤモンドの生成ができ るが，結晶成長中に発生する結晶欠陥によってデバイ ス特性においてリーク電流，耐電圧の低下に繋がって しまう問題がある。そこで我々はシンクロトロン光を用いたX線トポグラフィー観察を行い，HPHT合成結晶及びCVD成長結晶の結晶欠陥の評価を行ったので報告する。

表1 半導体材料の物性値

Material	Band Gap $E_{6}(e V)$	Breakdown Electric Field E_{in}（MV／cm）	Saturate Speed $v_{\mathrm{sta}}\left(\times 10^{7} \mathrm{~cm} / \mathrm{s}\right)$	Mobility $\mu\left(\mathrm{cm}^{2} / \mathrm{Vs}\right)$	Relative Dielectric Constant ε_{r}	Thermal Conductivity λ（W／cmK）
Diamond	5.47	＞10	$\begin{aligned} & 1.5(\mathrm{e}) \\ & 1.1 \text { (h) } \end{aligned}$	$\begin{aligned} & \sim 4500(\mathrm{e}) \\ & \sim 3800(\mathrm{~h}) \end{aligned}$	5.7	22
GaN	3.42	3	2.4 （e）	~ 2000（e）	8.9	1.5
Sic	3.26	2.8	2.2 （e）	~ 1000（e）	9.7	4.9
SI	1.12	0.3	1.0 （e）	~ 1350（e）	11.9	1.5

表2 ダイヤモンドの特徴と応用の可能性

2．実験方法

2－1 X線トポグラフィ一観察

HPHT合成及びCVD成長で生成された単結晶ダイ ヤモンドに内在している結晶欠陥を観察するために シンクロトロン光を用いたX線トポグラフィー観察を行った。我々は，佐賀県鳥栖市の佐賀県立シンクロト ロン光研究センター（SAGA－LS）のBL09A（照射•結晶構造ビームライン）のシンクロトロン放射光を用いて実験を行った。このビームラインは，偏向電磁石から放射される連続光子エネルギーのシンクロトロン放射光を単色化せずに利用することができ，光学素子の無い非常に簡単な構成である。X線照射によってX線 トポグラフィーによる結晶材料の欠陥構造イメージ ングなどを行うことができる。光子エネルギーとして は，白色光のピークエネルギーは4keVであり，ビー ムサイズは 100 mm （幅）$\times 15 \mathrm{~mm}$（高さ）である。シンク ロトロン放射光には2種類ある。一つは白色光であり，特徴としてスリット幅が広く取ることができ，X線ト ポグラフィー観察において視覚的に広い範囲を撮る ことができる。もう一つは単色光であり，白色光とは逆で観察視野が狭い。しかし，白色光よりも精密なX線トポグラフィー観察像を得ることができる。

2－2 X線トポグラフィー観察実験手順

今回扱ったX線トポグラフィー装置の概要及び実験手順を以下に述べる。（図1参照）
（1）1st slit及び2nd slitで白色光を任意のサイズに整形する。
（2）試料を取り付けイオンチャンバーでX線エネル

ギーの強度を計測しながら，ステージ類の軸調整を行 う。
（3）IP（Imaging Plate）にて，多くの回折斑点を一度 に収集し，その中で強度の強い回折斑点（方位面）を決定する。
（4）フラットパネルセンサーで決定した回折斑点を捉え，強度•位置を確認する。
（5）任意の回折位置にX線フィルムを設置し，高解像の白色トポグラフ撮影を行う。
（6）単色X線トポグラフィーを行う場合は，モノク ロマーター（メーター）調節を経て白色／単色の切り替 えシステムにより単色配置に切り替える。
（7）白色像で確認した回折位置にフラットパネルセ ンサーを固定し，モノクロメーターを回転させながら回折強度を捉え，（5）と同様に単色X線トポグラフ撮影 をする。

また，X線フィルムは3 $\mu \mathrm{m}$ 程度の高解像のものを用 いた。（1）

図1 X線トポグラフィ一装置（BL09A）

3．実験結果

角谷らによって極めて高純度で低欠陷密度のタイ プ Iaの高圧高温合成結晶及びCVD成長結晶が得ら れた。（2）我々はこれらの結晶試料のX線トポグラフ観察を行った。

$3-1$ HPHT結晶 1 （ $\quad 7.3 \times 7.2 \times 0.8 \mathrm{~mm}^{3}$

HPHT合成後に（001）面を表面とし，平行にレー ザーによってカットされた結晶試料である。この HPHT結晶試料の単色X線トポグラフ撮影を行った。撮影条件を表3に示した。HPHT結晶の単色X線トポ グラフィー像を見ると，積層欠陥が内在していること が分かった。また，像の中心部から外側へ向かって指向性を持っている。これは種結晶から成長する際に導入していることを意味している。（図2参照）

表3 HPHT結晶 1 （線トポグラフ撮影条件

X－ray kind	Monochromatic
X－rays wavelength（photon energy）	$0.86 \AA(14.48 \mathrm{eV})$
Diffraction angle	18.3°
Diffraction side	220
Slit width［mm \times mm］	1st slit： 9.5×9.5
Gonio θ（Sample angle）	2nd slit： 7.5×7.5
Gonio2 θ（Detector angle）	18.3°
	35°

図2 HPHT結晶（1）X 線トポグラフィー像

$3-2$ CVD結晶 $7.0 \times 7.0 \times 1.0 \mathrm{~mm}^{3}$

この CVD 結晶は HPHT 合成結晶を基板とし て，その上に CVD 成長させたものである。成長後，（001）面と平行に CVD 成長層のみをカッ トしてある。今回はこの CVD 結晶の単色 X 線 トポグラフ撮影を行った。 X 線トポグラフィー像を見ると，細かい線欠陥が多数観察すること

ができた。この欠陥は CVD 成長による引上げ られるとともに線欠陥も成長していると考えら れる。そのため，ほとんどの線欠陥が同じ指向性を持っていることが分かる。

表4 CVD結晶 X線トポグラフ撮影条件

X線種類	単色光
X線波長（フォトンエネルギー）	$0.86 \AA(14.5 \mathrm{eV})$
回折角	16.3°
回折面	(220) 面
ゴニオ θ（試料角度）	16.3°
ゴニオ 2θ（検出器角度）	35°

図 3 CVD結晶 X 線トポグラフィ一像

4．考察

以上の実験結果より，HPHT 合成結晶と CVD成長結晶の結晶欠陥を比較する。
HPHT 合成結晶の結晶欠陷を見ると，像中心 とまわりの結晶欠陥の形状が異なっており，欠陥の発生場所や欠陥の形状に統一性や方位性に規則性が見られない。CVD成長結晶に内在して いる結晶欠陥は小さな線欠陥である。この結晶欠陥の発生場所の規則性は見られないが，線結晶の成長方向は指向性を持っている。これは CVD 成長の引上げ方向によって結晶欠陷の延 びているため指向性となっている。
HPHT 合成結晶と CVD 成長結晶の結晶欠陥 を比較した結果，HPHT 合成結晶の結晶欠陥は積層欠陥及び線欠陥が混在しているのに対し， CVD成長結晶は線欠陥が内在していた。また， HPHT合成結晶の欠陥は線欠陥が少ないため積層欠陷が顕著に見られ導入方向に統一性がない が，CVD成長結晶の欠陥は結晶成長による導入

方向の統一性があることがわかった。

5．結論

極めて高純度，低欠陥密度の HPHT 合成結晶及び CVD 成長結晶のダイヤモンド単結晶の白色／単色 X 線トポグラフィー観察を行い，結晶に内在している結晶欠陥の評価を行った。

HPHT結晶のX線トポグラフィー像から積層欠陥が内在していることが分かり，像中心部か ら周囲に向かって延びていることが分かった。 また，X 線トポグラフ撮影時に試料角度を 18.3° 傾けているため，X 線トポグラフィー像 も傾いている。そこでこの傾きを考慮して積層欠陥の形状を補正すると，直角二等辺三角形に なることが分かった。

CVD 結晶においては，CVD 成長に伴い引上 げ方向に延びた指向性を持った線欠陥が多数観察することができた。

HPHT 合成結晶と CVD 成長結晶に内在して いる欠陷を比較すると，HPHT 合成結晶は線欠陥（転位）が少ないので積層欠陥顕著に見えてい る。この積層欠陥は合成時の条件や II a 結晶中 にわずかに含まれる窒素が積層欠陷の生成に影響を与えている可能性がある。（4）また，CVD 成長結晶は成長方向に引き上げた方向に欠陥が導入しやすく，HPHT 合成結晶の結晶欠陷に比べ，指向性を持った結晶欠陥が多く観察できた。

6．謝辞

本研究でシンクロトロン放射光におけるX線 トポグラフィー観察においてご尽力いただきま した SAGA－LS の石地耕太郎氏に感謝いたしま す。そして，測定試料を提供いただいた住友電工の角谷均氏に感謝申し上げます。本研究の一部は，科研費，マツダ科学助成，九州産業経済局事業の成果です。
［2］H．Sumiya and K．Tamasaku，＂JJAP＂ 51090102 （2012）．
［3］K．Tamasaku et al．，＂J．Phys D＂ 38 A61（2005）
［4］H．Umezawa et al．，＂Photon Factory Activity Report 2011＂\＃29（2012）．
［5］P．M．Martineau et al．，＂Diamond \＆Related Materials＂ 17 262－269（2008）．
［6］M．Kasu et al．，＂Diamond \＆Related Materials＂ 1760－65（2008）．
［7］Yukako Kato et al．，＂Japanese Journal of Applied Physics＂ 51090103 （2012）．
［8］Yukako Kato et al．，＂Diamond \＆Related Materials＂ 29 37－41（2012）．
［9］A．Tallaire et al．，＂Diamond \＆Related Materials＂ 20 875－881（2011）．
［10］Hitoshi Umezawa et al．，＂Diamond \＆Related Materials＂ 20 523－526（2011）．
［11］David R．Black et al．，＂Diamond and Related Materials＂ 2 121－125（1993）．

参考文献

［1］K．Ishiji et al．，＂Phys．Status Solidi A 208＂，No． 11，2516－2521（2011）．

