III 加速器／ビームライン等の現状

1 加速器

1．光源概要

SAGA－LS光源加速器は周長 75.6 m の 1.4 GeV 電子蓄積リングと入射用の 255 MeV リニアックから構成 される［1］。リニアックからの電子ビームを蓄積リング に入射蓄積後加速する低エネルギー入射方式を採用 している。シンクロトロン放射光光源として偏向電磁石（6ポート）と挿入光源（3台）を運用している。現状の全光源スペクトル及び利用エネルギー範囲を図1 に示す。偏向電磁石は，磁場1．46T，臨界エネルギー 1.9 keV である。挿入光源としてはアンジュレータが2台，超伝導ウィグラーが1台運用されている。アンジ ュレータは，1台が佐賀県設置のAPPLE－II型［2］偏光可変アンジュレータLS3U［3］，もら1台は佐賀大学設置のプラナーアンジュレータLS4Uである。ウィグ ラーは，SAGA－LSで開発された超伝導－常伝導ハイブ リッド型の3極ウィグラーLS2W［4，5］で磁場は4Tで ある。臨界エネルギー5．2keVの硬X線を発生する。偏向電磁石と超伝導ウィグラーの運用により， SAGA－LSの利用者へ提供可能なシンクロトロン放射光のエネルギー範囲は，中小規模のシンクロトロン放射光施設としては広く，実効的には数 +eV から 40 keV近くに及ぶ（図1参照）。また数十 $\mathrm{eV} \sim 1 \mathrm{keV}$ 領域では

アンジュレータにより，偏向電磁石に比べ約3枌輝度 の高いシンクロトロン放射光利用が可能となってい る。

2．運転状況

ビーム供給時の1日の運転時間は10．5時間（10：30 $-21: 00$ ），夜間運転は行っていない。入射は朝 1 回行う。リニアックから蓄積リングヘビーム入射を行った後， 1.4 GeV に加速，その後ウィグラー励磁 を行い， 4 T 励磁終了後ウィグラーによる蓄積リング の磁場条件の変化を補正し，ビーム供給（ユーザー運転）を開始する（ウィグラーを含む1日の運転手順，蓄積電流変化状況は文献［5］に詳しい）。ビーム供給（ユーザー運転）開始時の蓄積電流は 300 mA で，蓄積電流×ビーム寿命（ $\mathrm{i} \tau$ 積）は約 1500 mAh である。
週の運転サイクルは，月曜はマシンスタディ，火 ～金はビーム供給（ユーザー運転）で，土日祭日は運転を行っていない。年間の主な運転停止期間は，年末年始（ 2 週間），夏期休腵（ 2 週間）及び点検シヤッ トダウン（4月3週間，10～11月6週間）であった。 2012 年度の光源加速器のビーム供給時間は 1585.5

図 1 SAGA－LS の全光源スペクトルと各ビームラインの光子エネルギ一利用範囲（2012 年度）

時間であった。ビーム供給時間は，施設拡張を行つ た 2008 年度を除けば例年概ね 1,500 時間前後で推移している。

ビーム供給時の運転は，加速器グループ研究員と業務委託の支援員によって行っている。研究員は 2 シフト制をとり，早番シフト（8：30～17：15）1名と遅番シフト（13：00～21：45）1名である。立上作業 では，加速器泠却水系とリニアッククライストロン LV 系立上げを業務委託支援員 1 名が行い，その他機器の立上げを早番研究員 1 名が行う。ビーム入射 は早番研究員 1 名と業務委託支援員 1 名で行い，立下げは遅番研究員 1 名で行っている。
2012年度，ビーム供給時に運転中断の要因となっ た光源加速器のアボートは 5 件であった。アボート時間の総計は 35.7 時間で，ビーム供給時間（1585．5時間）に対するアボート率は約 2.3% であった。ア ボート時間の内訳は，リニアッククライストロン電源故障による入射中止（ 21 時間），蓄積リング高周波空洞系泠却水温制御用 PLC 故障による蓄積リン グ運転停止（ 10.5 時間），瞬低による機器停止 2 回 （それぞれ 1.3 時間， 1.6 時間），蓄積リング磁場補正トラブルによる再入射（1．3時間）である。アボー卜時間は，主に加速器機器内部の要因が決めている が，近年，施設外要因の瞬低によるアボートが増加傾向にある。

SAGA－LS の硬X線光源として重要な超伝導ウィ グラーLS2Wは，2011年11月に正式なビーム供給 （ユーザー運転）を開始して以来，2012年度末現在 まで前述の加速器槤転サイクルに則って大きな支障 なく定常的に運用されてきた。2012年度，ウィグ ラービームラインBL7の利用に影響したLS2W の トラブルは，1件であった。冷涷機交換メンテ後約 1年経過後の2012年10月にウィグラー励磁途中約 3．7T で超伝導コイルのクエンチが発生し，BL7 は利用停止（10．5時間）となった。ウィグラーの泠涷機へッド，超伝導コイル及び鉄磁極が 4 K 付近まで冷却されたことを確認の上，ビーム供給時間外に単体の励磁消磁試験を行った後，ビーム供給（ユーザー運転）に復帰した。LS2Wユーザー運用開始後通算 3 度目のクエンチで，これまでの全てのクエンチが

励磁途中 $(2.5 \mathrm{~T} \sim 4 \mathrm{~T})$ に発生している（ただし，こ のトラブルの際，ウィグラー泠却を待ちつつ，平行 してビームの入射蓄積を行い，BL7以外のビーム供給（ユーザー運転）は通常どおり行つている）。

3．開発研究

光源研究として2012年度，既設偏向電磁石を用いた楕円偏光発生の基礎的スタディを行った。偏向電磁石 からのシンクロトロン放射光は垂直方向に楕円偏光分布を有していることを利用し，ビームラインに対し て発光点となる電子ビーム位置でビーム軌道を垂直面内で傾け，その傾斜角で偏光を制御する［6－9］。中小規模のシンクロトロン放射光施設では，偏光可変アン ジュレータによる 1 keV 又はそれ以上のエネルギー領域で楕円偏光を得ることは，（予算上の課題を除いて も）ビームエネルギー等加速器の制約から難しい。そ れに対しこの斜め軌道による偏向磁石からのシンク ロトロン放射光（斜め放射光と略記）の生成は，非常 に簡単で原理的には中小規模蓄積リングでも容易に行える。SAGA－LSにおける原理的有効性を検証する ため，BL12を用いてスタディを行った。得られる光強度と偏光度のバランスの観点からビーム傾斜角は $\sim 1 / \gamma \mathrm{rad}$ 付近が選げれた。蓄積リングの電子ビーム軌道歪み補正システムを用いて，リング全周で意図的に軌道歪みを作り，BL12発光点のビーム位置で上下方向にビーム軌道の傾きを生成し，斜め放射光をBL12 に導入した。この斜め放射光を使ってビームライング ループによってCosoPt 2 薄膜を用いた楕円偏光利用試験が行われ，良好なXMCDスペクトルが測定された ［10］。斜め放射光を実用とするには，斜め軌道を生成 するための軌道歪みを局所化し他ビームラインに影響しないことが必要であり，加速器グループではこの課題について，引き続き検討を行っている。
以前から進めているレーザーコンプトンガンマ線実験では，2012年度，ファイバーレーザー（ $\lambda=1064$ $\mathrm{nm})$ と CO_{2} レーザー（ $10.6 \mu \mathrm{~m}$ ）の2種のレーザーを用いて蓄積リングの入射エネルギー（ 255 MeV ）から蓄積エネルギー（ 1.4 GeV ）までの広い 範囲でガンマ線測定によって蓄積電子エネルギーの絶対值測定を行った。また， CO_{2} レーザーによるガンマ線の長時間

照射実験を行った［11］。これによりビーム供給（ユー ザー運転）と共存して安定にガンマ線照射実験を行え ることが確認された。これら実験と平行しレーザーコ ンプトン実験の大幅な効率向上を目的に，蓄積リング遮蔽壁外にレーザーコンプトンガンマ線を引き出し利用する汎用のガンマ線ビームラインBL1の建設を進めた。

超伝導ウィグラーLS2Wの運用高度化に向けてマ ルチポール磁石によるウィグラーの6極磁場成分の補償試験を行った。ウィグラーLS2Wのラティス上の対称位置である直線部LS5に設置したマルチポール磁石によってウィグラーの6極成分の補償試験を行い， ほぼ見積もりどおりの補償結果を得た。

蓄積リング真空槽の位置変動計測システムの開発 とこれを用いた真空槽の位置変動測定を開始した。そ の結果，運転サイクルと真空槽変位の相関が観測され た $[12]$ 。真空槽変位は，ビーム軌道測定系においてビー ム位置の見かけ上の変異として観測されるため，軌道 の計測制御において系統誤差となる。低エネルギー入射方式を採用しているSAGA－LSでは，加速時の急激 なシンクロトロン放射光の熱負荷増大による真空槽変位への影響が重要である。変位測定を継続し調査を進めている。

効率の高いバンチ制御を目的に進めているリニ アック－蓄積リング間同期入射実験では，2012年度，蓄積リング周回周波数とリニアッククライストロン モジュレータの商用 60 Hz タイミング信号との同期に おける，タイムジッターの改善及びタイミング調整の作業効率改善のため，蓄積リング－制御室間信号を光フ アイバーに変更し，制御室タイミング系を改修した。 これを用いてシングルバンチ入射蓄積試験を行った。

参考文献

［1］S．Koda，et．al．，＂Progress and Status of Synchrotron Radiation Facility SAGA Light Source＂，Proceedings of IPAC＇10，Kyoto，Japan， 2579 （2010）．
［2］S．Sasaki，＂Analyses for a planar variably－polarizing undulator＂，Nuclear Instruments and Methods in Physics Research A

347， 83 （1994）．
［3］S．Koda，et．al．，＂Status of Synchrotron
Radiation Facility SAGA－LS＂，Proceedings of Particle Accelerator Society Meeting 2009，Tokai， Japan， 671 （2009）．
［4］S．Koda，et．al．，＂Design of a Superconducting Wiggler for the Saga Light Source Storage Ring＂， IEEE Transactions on Applied Superconductivity， 21， 32 （2011）．
［5］江田他，＂SAGA－LSにおける超伝導及び常伝導マ グネットから成るハイブリッド型3極ウィグラーの開発と運用状況＂，放射光学会誌「放射光」，24， 141 （2011）．
［6］K．T．Hsu，et．al．，＂A dynamic local bump system for producing synchrotron radiation with an alternating elliptical polarization＂，Nuclear Instruments and Methods in Physics Research A 406， 323 （1998）．
［7］C．H．Kuo，et．al．，＂Compensation Scheme of Elliptical Polarization from Bending Magnet at SRRC＂，Proccedings of 6th EPAC 98，Stockholm， Sweden， 1664 （1998）．
［8］M．Boge，et．al．，＂Fast Polarization Switching at the SLS Microspectroscopy Beamline Pollux＂， Proceedings of EPAC 2006，Edinburgh，Scotland， 3610 （2006）．
［9］J．Raabe，et．al．，＂PolLux：A new facility for soft x －ray spectromicroscopy at the Swiss Light Source＂， Review of Science Instruments，79， 113704 （2008）． ［10］瀬戸山寛之他，＂偏向電磁石を光源とする軟X線 ビームライン（BL12）でのXMCDスペクトル測定の試み＂，第26回日本放射光学会年会予稿集，名古屋， 72 （2013）．
［11］T．Kaneyasu，et．al．，＂Continuous Operation of the Laser Compton Gamma－ray Source at SAGA－LS＂，Proccedings of the 9th Annual Meeting of Particle Accelerator Sociaty of Japan，Toyonaka， Japan， 1343 （2012）．
［12］Y．Iwasaki，et．al．，＂Observation of BPM
Vacuum chanmber Movement at the SAGA－LS

Electron Storage Ring＂，Proccedings of the 9th
Annual Meeting of Particle Accelerator Sociaty of Japan，Toyonaka，Japan， 933 （2012）．

加速器グループ
江田 茂

