

# 九州シンクロトロン光研究センター 県有ビームライン利用報告書

課題番号:1910086F

B L 番号: BL11

(様式第5号)

屋外大気エアロゾル中元素の XANES による化学状態解析と 細胞応答性との相関解析

XANES chemical speciation of elements in aerosols collected in outdoor and subway environment

奥田知明,齋藤克知,岡本拓真,杉本和貴

Tomoaki OKUDA, Katsutomo SAITO, Takuma OKAMOTO, Kazuki SUGIMOTO

慶應義塾大学理工学部応用化学科

Department of Applied Chemistry, Faculty of Science and Technology, Keio University

- ※1 先端創生利用(長期タイプ)課題は、実施課題名の末尾に期を表す(I)、(II)、(II)、(II) を追記してください。
- ※2 利用情報の公開が必要な課題は、本利用報告書とは別に利用年度終了後2年以内に研究成果公開{論文(査読付)の発表又は研究センターの研究成果公報で公表}が必要です(トライアル利用を除く)。
- ※3 実験に参加された機関を全てご記載ください。
- ※4 共著者には実験参加者をご記載ください(各実験参加機関より1人以上)。

# 1. 概要 (注:結論を含めて下さい)

屋外と地下鉄駅構内で捕集した粒子状物質(エアロゾル粒子)中の金属成分である Mn の XANES スペクトルを取得した。粒子状物質採取地点の異なる試料を分析した結果、粒子の採取された地点により、Mn の XANES スペクトルが異なっていた。このことから、屋外と地下鉄駅構内では粒子中の Mn の化学状態が異なる可能性が示唆された。今後、屋外と地下鉄空気中粒子状物質の物理化学特性の解明において本法が役立つことが期待される。

## (English)

The XANES spectra of manganese in particulate matter (aerosol particles) collected outdoor and in a subway station were acquired. As a result of analyzing samples with different sampling points, XANES spectra of manganese in outdoor particle and in a subway station particle were different from each other. This fact suggests that the chemical state of manganese would be different depending on the sampling points. It is expected that this method would be useful for elucidating the physicochemical properties of particulate matter in the outdoor and the subway air.

#### 2. 背景と目的

近年、 $PM_{2.5}$  に代表される空気中の微小粒子状物質の有害性が懸念されている。我が国では、2009 年に屋外一般環境における  $PM_{2.5}$  の環境基準値が設定されて以来、全国的には屋外の  $PM_{2.5}$  濃度は漸減傾向にある。一方で、室内環境や閉鎖的環境(地下街や地下鉄構内など)では、先述の  $PM_{2.5}$  環境基準値は適用されず、さらには場所による違いも大きいことから、空気環境状況に関して不明な部分が多い。一般に、人間の生活においては多くの時間を室内または閉鎖的環境で過ごすことから、これらの空間における空気品質 (Air Quality) を向上させることが望ましい。閉鎖的環境の代表例として挙げられる地下鉄は、我が国の都市域において極めて重要な交通インフラであり、多くの人々の生活

手段として欠かせないものとなっている。しかしながら、地下鉄構内における空気品質の実情については、これまでわが国では系統的な調査は行われてこなかった。

そこで我々は、実際に鉄道運営者の許可を得て地下鉄構内の粒子を採取し、その化学分析を行った<sup>1)</sup>。その結果、全粒子 (TSP) 中のマンガンの濃度が屋外大気の約 100 倍と極めて高いことが分かった。そこで本研究では、放射光 XAFS を用いて、屋外大気と地下鉄構内において採取された粒子中のマンガンの化学状態を測定し、その差異に伴う発生源の違いを解明することを目的とした。

### 3. 実験内容(試料、実験方法、解析方法の説明)

地下鉄 A 駅構内において、粒子の化学組成分析用に  $PM_{2.5}$  および総浮遊粒子状物質 (TSP) を、5 L/min の吸引速度で石英繊維フィルター (Advantec QR-100) に採取した。採取時間は、5:00~15:30 であった。 $PM_{2.5}$  の分級には、マルチノズルカスケードインパクター (NL-5-2.5A, 東京ダイレック) を用いた。また、本研究では、神奈川・埼玉・福岡においてバーチャルインパクターとサイクロンを組み合わせた微小粒子と粗大粒子の大流量同時採取装置  $^{2-5)}$ を稼働させ、大気粒子の採取を行った。流量は 1,200 L/min とし、3~4 週間の稼働で約 100~200 mg 程度の粒子状物質を得た。この大気粒子試料約 20 mg とセルロースパウダー300 mg を 50 kN プレスにかけ層状にペレット成型した。これらのフィルターおよびペレット試料を SAGA-LS BL11 に持ち込み、放射光 XAFS の実験を行った。

Mn K 吸収端近傍 6,358~7,086 eV のエネルギー領域において、7 素子 SDD を用いた蛍光収量法により XAFS 測定を行った。測定は、大気粒子ペレット試料においては、XANES 領域を 0.36 eV/step (5 s/step)とし、残りの領域は 1.90~8.38 eV/step (1 s/step)とした合計約 30 分の系で行った。また、地下鉄粒子を採取したフィルター試料のスペクトル測定においては、XANES 領域を 0.36 eV/step (10 s/step)、6,598~6,675 eV の領域を 1.90 eV/step (2 s/step) とし、残りの領域は 5.33~8.38 eV/step (1 s/step)とした合計約 50 分の系で行った。

## 4. 実験結果と考察

図1に、線形合成解析に用いる Mn の標準試料の XANES スペクトルを示した。この Mn の XANES スペクトルは、0 価、2 価、3 価、4 価および 7 価の Mn から得られたものである。これを見ると、価数によってピークの立ち上がり、すなわち吸収端やピーク時の吸光度が異なることが分かった。今後、屋外大気および地下鉄構内にて採取された粒子中 Mn の解析を行う際は、線形合成範囲などを適切に定めて行っていく。

次に、神奈川・埼玉・福岡において、同季節に採取された微小粒子に含まれる Mn の XANES スペクトルの測定結果を図 2 に示す。図 2 を見ると、神奈川と福岡で採取された大気粒子中 Mn の XANES スペクトルは、約 6,550 eV と約 6,555 eV の 2 か所に小さいピークがあるが、埼玉で採取された大気粒子中 Mn の XANES スペクトルは、約 6,550 eV の 1 か所のみにピークが見られる。また、約 6,550 eV のピーク地点における吸光度は埼玉で採取された大気粒子による XANES スペクトルの方が他の 2 地点の XANES スペクトルよりも大きかった。

続いて、大気粒子と A 駅の地下鉄構内にて採取された粒子に含まれる Mn の XANES スペクトルを図3にまとめて示した。これを見ると図2と同様、ピークの形が異なっていることが分かった。また、地下鉄構内の粒子中 Mn より得た XANES スペクトルは約6540 eV のところにわずかに吸光度の上昇が見られた。

以上より、屋外大気や地下鉄構内において、試料採取地点の違いにより、得られた XANES スペクトルの形が異なることが分かった。このことから、粒子中の Mn の化学状態が異なる可能性が示唆された。今後は、大気粒子中 Mn の XANES スペクトルにおいて、Mn の標準物質の XANES スペクトルによって線形合成解析を行うことで、詳細な化学状態の解明を行っていく。

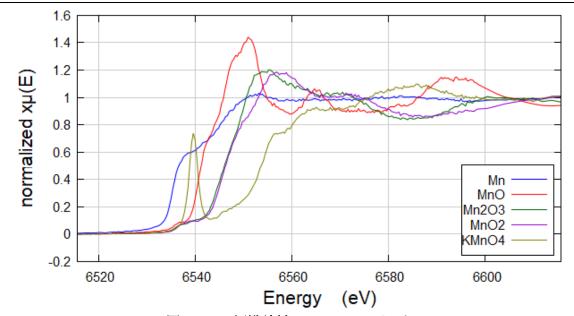



図 1. Mn 標準試料の XANES スペクトル

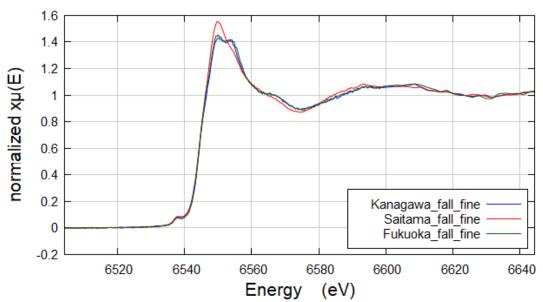



図 2. 大気粒子中 Mn の XANES スペクトル

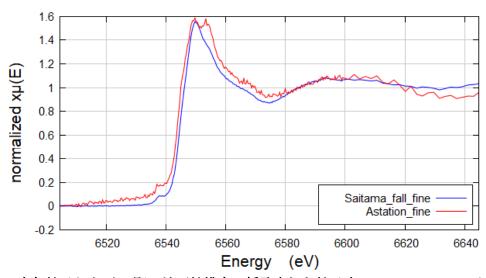



図3. 大気粒子およびA駅の地下鉄構内で採取された粒子中MnのXANESスペクトル

#### 5. 今後の課題

今後は、地下鉄構内粒子中に多量に存在する Mn 以外の元素についても XAFS スペクトル解析を行い、地下鉄構内で捕集した粒子状物質のより詳細な物理化学特性の解明を目指す。さらに、地下鉄構内といった閉鎖的空間と、屋外一般環境大気との比較についても今後検討を行う。

#### 6. 参考文献

- 1) 奥田知明,坂出壮伸,藤岡謙太郎,田端凌也,黒澤景一,野村優貴,岩田歩,藤原基 (2019) 地下鉄構内空気中粒子状物質の特性調査,大気環境学会誌,**54**(1),28-33.
- 2) T. Okuda, R. Isobe, Y. Nagai, S. Okahisa, K. Funato, K. Inoue, "Development of a high-volume PM2.5 particle sampler using impactor and cyclone techniques", Aerosol Air Qual. Res., 15, 759-767 (2015).
- 3) K. Ogino, K. Nagaoka, T. Okuda, A. Oka, M. Kubo, E. Eguchi, Y. Fujikura, "PM2.5 induced airway inflammation and hyperresponsiveness in NC/Nga mice", Environ. Toxicol., 32, 1047-1054 (2017).
- 4) T. Okuda, R. Isobe, "Improvement of a high-volume aerosol particle sampler for collecting submicron particles through the combined use of a cyclone with a smoothened inner wall and a circular cone attachment", Asian J. Atmos. Environ., 11, 131-137 (2017).
- 5) T. Okuda, D. Shishido, Y. Terui, K. Fujioka, R. Isobe, Y. Iwaki, K. Funato, K. Inoue, "Development of a high-volume simultaneous sampler for fine and coarse particles using virtual impactor and cyclone techniques", Asian J. Atmos. Environ., 12, 78-86 (2018).
- 7. **論文発表・特許**(注:本課題に関連するこれまでの代表的な成果) なし
- **8. キーワード** (注: 試料及び実験方法を特定する用語を 2 ~ 3) 地下鉄、XANES、マンガン
- **9. 研究成果公開について**(注:※2に記載した研究成果の公開について①と②のうち該当しない方を消してください。また、論文(査読付)発表と研究センターへの報告、または研究成果公報への原稿提出時期を記入してください(2019年度実施課題は2021年度末が期限となります)。 長期タイプ課題は、ご利用の最終期の利用報告書にご記入ください。
  - ① 論文(査読付)発表の報告 (報告時期: 2022年 3月)