

# 九州シンクロトロン光研究センター 県有ビームライン利用報告書

課題番号::2308045I

B L 番号: BL09

(様式第5号)

ショットキーバリアダイオード作製プロセス後に生じる HVPE 成長 β 型酸化ガリウムのキラー欠陥のシンクロトロン X 線トポグラフィー観察 Observation of dislocations and defects in trench-type SBDs in HVPE β-Ga2O3 epitaxial

layer by synchrotron X-ray topography

嘉数 誠, Sdoeung Sayleap 大坪優斗, Andre Kombo Helder

Makoto Kasu, Sdoeung Sayleap, Yuto Otsubo, Andre Kombo Helder

佐賀大学大学院 理工学研究科 Graduate School of Engineering, Saga University

- ※1 先端創生利用(長期タイプ)課題は,実施課題名の末尾に期を表す(I),(II),(II) を追記してください.
- ※2 利用情報の公開が必要な課題は,本利用報告書とは別に利用年度終了後2年以内に研究成果公開{論文(査読付)の発表又は研究センターの研究成果公報で公表}が必要です(トライアル利用を除く).
- ※3 実験に参加された機関を全てご記載ください.
- ※4 共著者には実験参加者をご記載ください(各実験参加機関より1人以上).

#### 1. 概要 (注:結論を含めて下さい)

酸化ガリウムは広いバンドギャップ、高い絶縁破壊電界や優れた熱伝導率などから次世代のパワーデバイス材料として期待されている。しかし、半導体デバイスの下地となる単結晶基板中の格子欠陥(結晶欠陥)は、素子特性に影響を与えるため課題である。実際に $\beta$ - $Ga_2O_3$ を用いたショットキーバリアダイオードにおいて、転位などの欠陥がリーク電流を引き起こすことが報告されている。従って、 $\beta$ - $Ga_2O_3$ においても結晶欠陥の抑制や制御が不可欠であることが明らかになった。結晶欠陥に関しての報告も増えてきたが、未だわかっていない部分も多く、更なる研究が必要である。

我々はこれまでに X線トポグラフィーによりダイヤモンド単結晶[1,2]や Edge defined Film fed Growth 法(EFG)や Vertical Bridgeman (VB)法[4]で育成した  $\beta$ -Ga $_2$ O $_3$  単結晶、Halide Vapor Phase Epitaxy (HVPE)法で成長した  $\beta$ -Ga $_2$ O $_3$  エピ膜で転位や積層欠陥の観察と同定を行ってきた. 特に HVPE $\beta$ -Ga $_2$ O $_3$  エピ膜を用いて作製するショットキーバリアダイオード(SBD)は、パワー半導体として実用化の一歩手前まできている.

前回は、改良した CMP プロセスを用いた HVPE エピ膜のシンクロトロン X 線トポグラフィーを行った。今回は、SBD 作製後のシンクロトロン X 線トポグラフィー観察を行い、キラー欠陥の同定を行った。

SBD 作製プロセスでは、電極金属の蒸着やリソグラフィーや薬品を用いたリフトオフプロセスを行いますが、それらのプロセスで、キラー欠陥が生じる可能性があります。

今回は、g=022,004,225,605,-224,-1005のベクトル条件で観察し、 $g \cdot b$ 消滅則および  $g \cdot f$ 消滅則から、転位のbベクトル、面欠陥のfベクトルを同定した。また、同じバルク結晶から切り出した、隣のウェハも、注目している欠陥が残っている可能性があ

るため、観察した。

#### (English)

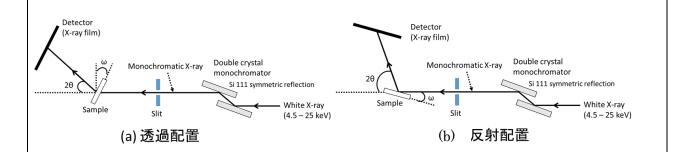
Gallium oxide are wide band gap semiconductor, and are expected as high-efficient high-power electronics device. However, defects in crystals lead to a leakage current and decrease the breakdown voltage.

It has been reported that dislocations in  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> cause leakage current by Schottky diode. Therefore, to minimize the defect density, it is critical to understand crystal defects such as dislocations and stacking faults. Recently we obtain high-quality  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>. Previously we found that the line-shaped defects are one of killer defects which cause leakage current and lower breakdown voltage.

In this study, we observed how the defects propagate from the substrate to the epitaxial layer in  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> and determined their properties. Then we have found novel crystal defects.

# 2. 背景と目的

我々はこれまで新しい電子材料の創製とそれを生かしたデバイス応用に関する研究を行ってきた. 現在は、シリコンカーバイド(SiC)、窒化ガリウム(GaN)、窒化アルミニウム(AIN)、ダイヤモンド、 $\beta$ -Ga<sub>2</sub>O<sub>3</sub>等の広いバンドギャップをもつ新しい半導体の創製とそれを用いた低損失・高耐圧のパワーデバイスの応用に関する研究を行っている.


環境・エネルギー問題は、今や不可避の深刻な社会問題である。エレクトロニクス、情報通信ネットワーク、電力ネットワークのエネルギー効率は、システムのハードウェアーの大部分を占めるシリコン(Si)材料の固有の物性限界に到達している。それを打破するために、Si よりバンドギャップが広い SiC や GaN や、新しいワイドギャップ半導体であるダイヤモンドや酸化ガリウムを用いた高効率パワーデバイスの実用化に繋げ、エネルギー問題を根本的に解決することが最大の目標である。しかしながら、半導体結晶を用いて作製される電子デバイス・光デバイスの特性は、その結晶中の格子欠陥の物性に大きく左右される。例えば、線状欠陥である転位は格子歪、欠陥準位、局所反応サイトなどを与え、多くの場合、デバイス特性を悪化させる要因となる。そのため結晶欠陥の観察や評価は、産業応用に向けた重要な課題である。我々はこれまでに X 線トポグラフィー測定によりダイヤモンド単結晶や  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> 単結晶の転位や積層欠陥の観察と同定を行ってきた。 $\beta$ -Ga<sub>2</sub>O<sub>3</sub> に関しては、これまで反射トポによる表面近傍の観察を行い、二次元像として欠陥の観察を行ってきた。しかし、これらの欠陥が実際に電子デバイスに与える影響はわかっていない。そのため、 $\beta$ -Ga<sub>2</sub>O<sub>3</sub> 半導体の素子特性向上のために、キラー欠陥となるものを理解しておく必要がある。

最近、実用化に近い結晶成長技術で成長した4インチの大口径化したウエハができるようになったが、SBD 特性に影響を与えるキラー欠陥を見つけてきた。ところが、その一部は、結晶成長過程ではなく、その後の研磨やエッチングで人為的にできたものだとわかった。そのため、前回までは、結晶成長やその後の工程を改良した結晶試料を作製し、様々な回折(g)ベクトルを変えるなどして、欠陥のバーガーズベクトル等の特性を調べた.

#### 3. 実験内容(試料,実験方法,解析方法の説明)

EFGβ-Ga<sub>2</sub>O<sub>3</sub>基板結晶の面方位を、(100)面方位の試料を用意する。そこで今回は、X線トポグラフィーで面方位の異なる EFGβ-Ga<sub>2</sub>O<sub>3</sub>エピ膜のシンクロトロンX線トポグラフィーを観察し、欠陥の分布や特性を調べる。gベクトルは出来るだけ多くのパターンで測定し、得られたトポグラフ像を比較し、欠陥コントラストの消滅則により、転位のバーガーズベクトルを同定する。

測定条件(X線エネルギー,試料配置など)は測定試料の面方位,観察範囲(表面からの深さ)によって変更するが,ブラッグ条件に当てはめ条件を決定する.



#### 4. 実験結果と考察

今回 HVPE  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> エピ薄膜結晶をシンクロトロン X 線トポグラフィーで観察したところ、欠陥が新たに見出した。これは今まで、観察したことのない特性をもつ欠陥である。現在、欠陥の種類や特性を調査中である。

## 5. 今後の課題

今回 HVPE  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>エピ薄膜結晶をシンクロトロン X 線トポグラフィーで観察した. 新たな欠陥を見出した。現在、バーガーズベクトルの解析を行っている. X 線トポグラフィーや AFM や断面 TEM などを活用して欠陥の分布や種類の傾向についてより詳しく調べる.

#### 6. 参考文献

- [1] M. Kasu, et al., Japanese Journal of Applied Physics 55, 1202BB (2016).
- [2] O. Ueda, et al., Japanese Journal of Applied Physics 55, 1202BD (2016).
- [3] H. Yamaguchi, et al., Superlattices and Microstructures 99, 99 (2016).

#### 7. 論文発表・特許(注:本課題に関連するこれまでの代表的な成果)

- [1] M. Kasu, R. Murakami, S. Masuya, K. Harada, and H. Sumiya, Synchrotron X-ray topography of dislocations in high-pressure high-temperature-grown single-crystal diamond with low dislocation density, Applied Physics Express, 7 (2014)125501.
- [2] S. Masuya, K. Hanada, T. Uematsu, T. Moribayashi, H. Sumiya, M. Kasu, Determination of the type of stacking faults in single-crystal high-purity diamond with a low dislocation density of <50cm<sup>-2</sup> by synchrotron X-ray topography, Japanese Journal of Applied Physics **55**, (2016)040303
- [3] S. Masuya, K. Hanada, T. Moribayashi, H. Sumiya, M. Kasu, Determination of partial dislocations of stacking fault in (111) single crystal diamond grown on (111) seed crystal by synchrotron X-ray topography, Journal of Crystal Growth, **468** (2017) 439.
- [4]S. Masuya, K. Hanada, T. Oshima, H. Sumiya, M. Kasu, "Formation of stacking fault and dislocation behavior during the high-temperature annealing of single crystal HPHT diamond", Diamond and Related Materials 75 (2017) 155.
- [5]S. Sdoeung, K. Sasaki, K. Kawasaki, J. Hirabayashi, A. Kuramata, T. Oishi, and M. Kasu, "Origin of reverse leakage current path in edge-defined film-fed growth (001) β-Ga2O3 Schottky barrier diodes observed by high-sensitive emission microscopy", Applied Physics Letters 117, 022106 (2020).
- [6] S. Sdoeung, K. Sasaki, K. Kawasaki, J. Hirabayashi, A. Kuramata, and M. Kasu, "Polycrystalline defects—origin of leakage current—in halide vapor phase epitaxial (001) β-Ga2O3 Schottky barrier diodes identified via ultrahigh sensitive emission microscopy and synchrotron X-ray topography", Applied Physics Express 14, 036502 (2021).
- [7] S. Sdoeung, K. Sasaki, S. Masuya, K. Kawasaki, J. Hirabayashi, A. Kuramata, and M. Kasu, "Stacking faults: Origin of leakage current in halide vapor phase epitaxial (001)  $\beta$ -Ga2O3 Schottky barrier diodes", Appl. Phys. Lett. 118, 172106 (2021)
- [8] S. Sdoeung, K. Sasaki, K. Kawasaki, J. Hirabayashi, A. Kuramata, and M. Kasu, "Probe-induced surface defects: Origin of leakage current in halide vapor-phase epitaxial (001) b-Ga2O3 Schottky barrier diodes", Appl. Phys. Lett. 120, 092101 (2022).
- [9] S. Sdoeung, K. Sasaki, K. Kawasaki, J. Hirabayashi, A. Kuramata, T. Oishi, and M. Kasu, "Line-shaped defects: Origin of leakage current in halide vapor-phase epitaxial (001) β-Ga2O3 Schottky barrier diodes", Appl. Phys. Lett. 120, 122107 (2022).
- [10] M. I. Chaman, K. Hoshikawa, S. Sdoeung, and M. Kasu, "High Crystal Quality of Vertical Bridgman and Edge-defined Film-fed Growth-Grown  $\beta$ -Ga2O3 Bulk Crystal Investigated Using High-Resolution X-ray Diffraction and Synchrotron X-ray Topography", Japanese Journal of Applied Physics 61, 055501 (2022).

## 8. キーワード (注: 試料及び実験方法を特定する用語を2~3)

β-Ga<sub>2</sub>O<sub>3</sub>, X線トポグラフィー

9. 研究成果公開について(注:※2に記載した研究成果の公開について①と②のうち該当しない方を消してください。また,論文(査読付)発表と研究センターへの報告,または研究成果公報への原稿提出時期を記入してください(2018 年度実施課題は 2020 年度末が期限となります)。

長期タイプ課題は、ご利用の最終期の利用報告書にご記入ください.

① 論文(査読付)発表の報告 (報告時期: 2023年 12月)