

九州シンクロトロン光研究センター 県有ビームライン利用報告書

課題番号:1710102T

BL番号:BL11

(様式第5号)

FeGa 合金における局所構造の解析

Structural study of local atomic arrangement in FeGa alloys 川又透、篠田弘造、鈴木茂 Toru Kawamata, Kozo Shinoda, Shigeru Suzuki

東北大学 多元物質科学研究所

Institute of Multidisciplinary Research for Advanced Materials, Tohoku university

- ※1 先端創生利用(長期タイプ)課題は、実施課題名の末尾に期を表す(I)、(Ⅱ)、(Ⅲ)を追記 してください。
- ※2 利用情報の公開が必要な課題は、本利用報告書とは別に利用年度終了後2年以内に研究成果公 開 {論文(査読付)の発表又は研究センターの研究成果公報で公表}が必要です(トライアル 利用を除く)。
- ※3 実験に参加された機関を全てご記載ください。
- ※4 共著者には実験参加者をご記載ください(各実験参加機関より1人以上)。

1. 概要(注:結論を含めて下さい)

異なる雰囲気下の熱処理により酸化還元処理が行われた Fe-Ga 二元系合金(Fe₈₀Ga₂₀, Fe₉₀Ga₁₀ at.%)の表面近傍における化学状態を、転換電子収量測定を用いた EXAFS(Extended X-ray Absorption Fine Structure)法により分析した。分析結果から、Fe-Ga 合金の熱処理において特定の条件では試料表面近傍で Ga の選択酸化を生じること、また選択酸化の程度が酸化還元プロセスおよび合金組成に影響を受けることを示唆された。

(English)

Surface products of Fe-Ga binary alloys ($Fe_{80}Ga_{20}$, $Fe_{90}Ga_{10}$ at. %) annealed in several atmosphere for oxidation / reduction process were investigated with CEY-EXAFS (Conversion Electron Yield - Extended X-ray Absorption Fine Structure) method. The present EXAFS analysis revealed that the selective oxidation of gallium was achieved on specific condition and it's suggested that the surface oxidation process of the Fe-Ga alloys were affected by alloy composition and annealing atmosphere.

2. 背景と目的

Fe-Ga合金は大きな磁歪を示すため、アクチュエータや振動発電用の素材として注目されている [1,2]。Fe-Ga合金中のGaはFeよりも酸化しやすく、それを利用して雰囲気熱処理によりGaが濃化した 表面酸化層を作り、表面の化学的安定性を向上させることが期待される[3]。本実験では、幾つかの 熱処理を施したFa-Ga合金中のGa-K吸収端でのXAS測定により得られる吸収端近傍のスペクトルの 違いから、Gaの化学状態に関する情報を得て、熱処理条件とGaの化学状態の関係を明らかにする。

3. 実験内容(試料、実験方法、解析方法の説明)

Fe₈₀Ga₂₀ および Fe₉₀Ga₁₀ (at. %) 母合金をアーク溶解法により作製した。これらの母合金から、機械加工により直径10mm、厚さ1mmの円盤状試料を作製した。各組成の試料について (a) 作製まま (表面機械研磨) (b) 酸化雰囲気下(大気中, 873K, 1h) (c) 還元雰囲気下(Ar-10%H₂, 873K, 1h) の条件で加熱処理を実施した。また、上記 (b), (c) の順に加熱処理を行った (d) 酸化-還元雰囲気下 の試料を作製した(図1,2)。各試料の色および光沢の差は目視で確認できるほどであり、熱処理条件により異なった表面状態が形成されたことが推察できる。各試料のFe および Ge K吸収端を対象とした光電子転換収量測定を、九州シンクロトロン光研究センター(佐賀県, 鳥栖市)の実験ステーションBL11において実施した。

 $Fe_{90}Ga_{10}$ において観察されるエッジジャンプ Δμ(E)の Fe, Ga 吸収端間の強度関係は、金属表面を持つ (a)と、各条件で熱処理を施した(b), (c), (d)で大きく変化しないが、一方 $Fe_{80}Ga_{20}$ においては、 (c)およ び(d)の条件において Ga 吸収端の Δμ(E)が強く観察され(a)における Fe および Ga のΔ μ(E)強度関係 が逆転している。特に(c)では Ga 吸収端でのみ明瞭な EXAFS 振動が観察された。この結果は $Fe_{80}Ga_{20}$ (c), (d) 試料表面近傍に Ga 元素が多く存在していることを示唆している。

図 5,6 に Fe₈₀Ga₂₀, Fe₉₀Ga₁₀の Fe, Ga 吸収端 XANES スペクトルを示す。同図中には、比較のため透 過 EXAFS 法によって測定された酸化物標準試料(Fe₂O₃, Ga₂O₃)の XANES スペクトルを示している。

Fe, Ga の各 XANES スペクトルでは、試料(a)で観察される金属状態の Fe および Ga に比べて、酸化 状態では吸収端が高エネルギー側にシフトする傾向が観察された。 $Fe_{80}Ga_{20}$ (c) 試料の Fe 吸収端を除 いて、各組成の試料(b), (c) および (d) の Fe, Ga 吸収端近傍 XANES スペクトルは、試料(a)と酸化物 標準試料の中間に位置しており、これらの試料の表面近傍では酸化物と金属状態が混在していること が示唆された。一方で、 $Fe_{80}Ga_{20}$ (c)における Fe K 吸収端 XANES スペクトルは金属状態(試料(a))のも のと良く一致している。この結果は $Fe_{80}Ga_{20}$ (c)試料の酸化過程において Fe_2O_3 に対して Ga_2O_3 が非常 に強い選択性をもって形成されたことを示唆している。

図 7,8 に Fe₈₀Ga₂₀, Fe₉₀Ga₁₀および酸化物標準試料の Fe, Ga K 吸収端 EXAFS スペクトルを示す。 Fe₈₀Ga₂₀ (c) における Fe K 吸収端のように、 $\Delta \mu$ (E) (図 3,4) が小さい場合高波数側の S/N 比が悪く なるが、大体の試料で k~12 の範囲に渡り EXAFS 振動を抽出することができた。 図 8,9 に、これらの EXAFS 振動をフーリエ変換することによって得られた動径分布関数を示す。 Fe₉₀Ga₁₀において、熱処理を施したサンプル(b)-(d)の Fe および Ga の第一,第二近接原子相関距離は、 それぞれの酸化物標準試料と一致しており、表面はこれらの酸化物が同時に存在していることを示し ている。一方、Fe₈₀Ga₂₀ (c), (d)の Fe 周囲同径分布関数においては金属性の Fe-Ga 相関が観察された。 これらの局所構造解析の結果は μ (E)および XANES スペクトルから予想された各試料表面の酸化状態 と良く一致する。

5. 今後の課題

イオンビームスパッタリングを併用した X 線光電子分光、二次イオン質量分析により、Fe, Ga および O の深さ方向定量分析を実施し、試料表面に形成された異なる酸化膜の状態を元素濃度の観点から考察する。

6. 参考文献

- [1] S. Asano, S. Fujieda, S. Hashi, K. Ishiyama, T. Fukuda, S. Suzuki: Magnetic Domain Structure and Magnetostriction of Fe-Ga Alloy Single Crystal Grown by the Czochralski Method, IEEE Magn. Lett., 8, 6101004 (2017).
- [2] 南都十輝,安藤宏孝,渡邊清和,高橋和也,福田承生,上野敏幸,川又透,藤枝俊,鈴木茂:チョクラルスキー法による Fe-Ga 基磁歪合金の大型単結晶製造技術の開発,まてりあ,56(1),27(2017)
- [3] S. Suzuki, R. Ukai, S. Fujieda, K. Shinoda: Selection Oxidation in Fe-Ga alloys Annealed under Low Partial Pressure of Oxygen, Proc. Inter. Symp. High-temperature Oxidation and Corrosion 2014, Hakodate, (2014)

7. 論文発表・特許(注:本課題に関連するこれまでの代表的な成果) 該当なし

8. キーワード(注:試料及び実験方法を特定する用語を2~3) FeGa 合金、転換電子収量測定、X線吸収微細構造.

9. 研究成果公開について

トライアル利用のため該当しない