

九州シンクロトロン光研究センター 県有ビームライン利用報告書

課題番号:1912127S

B L 番号: BL09

(様式第5号)

CVD ダイヤモンド単結晶の X 線トポグラフィー観察 X-ray topography observation of β-Ga₂O₃ single crystal.

嘉数 誠, 枡谷聡士, 松藤 遼, 波佐翔馬 片桐英鉄, 伊藤大悟, Sdoeung Sayleap Makoto Kasu, Satoshi Masuya, Ryo Matsufuji Syoma Haza, Eitetsu Katagiri, Daigo Ito, Sdoeung Sayleap

> 佐賀大学大学院 工学系研究科 Graduate School of Engineering, Saga University

- ※1 先端創生利用(長期タイプ)課題は、実施課題名の末尾に期を表す(I)、(II)、(II)、(II) を追記してください。
- ※2 利用情報の公開が必要な課題は、本利用報告書とは別に利用年度終了後2年以内に研究成果公開{論文(査読付)の発表又は研究センターの研究成果公報で公表}が必要です(トライアル利用を除く)。
- ※3 実験に参加された機関を全てご記載ください。
- ※4 共著者には実験参加者をご記載ください(各実験参加機関より1人以上)。

1. 概要 (注:結論を含めて下さい)

ダイヤモンドや酸化ガリウムは広いバンドギャップ,高い絶縁破壊電界や優れた熱伝導率などから次世代のパワーデバイス材料として期待されている.しかし,半導体デバイスの下地となる単結晶基板中の格子欠陥(結晶欠陥)は,素子特性に影響を与えるため課題である.

実際に β - Ga_2O_3 を用いたショットキーバリアダイオードにおいて、転位などの欠陥がリーク電流を引き起こすことが報告されている.従って、 β - Ga_2O_3 においても結晶欠陥の抑制や制御が不可欠であることが明らかになった.結晶欠陥に関しての報告も増えてきたが、未だわかっていない部分も多く、更なる研究が必要である.CVD ダイヤモンドのX線トポグラフィー観察を行い、今までのように結晶欠陥の観察と同定を行った.その後、学内にて、X線トポグラフィーで得られた結果との対応を行った.

(English)

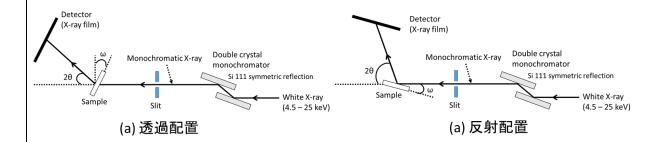
Diamond and Gallium oxide are wide band gap semiconductor, and are expected as high-efficient high-power electronics device. However, defects in crystals lead to a leakage current and decrease the breakdown voltage.

It has been reported that dislocations in β -Ga₂O₃ cause leakage current by Schottky diode. Therefore, to minimize the defect density, it is critical to understand crystal defects such as dislocations and stacking faults. Although some reports about defects in β -Ga₂O₃ has been reported, further investigation is necessary. In this study, we investigated the defects in Diamond, using X-ray topography.

2. 背景と目的

我々はこれまで新しい電子材料の創製とそれを生かしたデバイス応用に関する研究を行ってきた. 現在は、シリコンカーバイド(SiC)、窒化ガリウム(GaN)、窒化アルミニウム(AIN)、ダイヤモンド、 β -Ga₂O₃等の広いバンドギャップをもつ新しい半導体の創製とそれを用いた低損失・高耐圧のパワーデバイスの応用に関する研究を行っている.

環境・エネルギー問題は、今や不可避の深刻な社会問題である。エレクトロニクス、情報通信ネ


ットワーク、電力ネットワークのエネルギー効率は、システムのハードウェアーの大部分を占めるシリコン(Si)材料の固有の物性限界に到達している。それを打破するために、Si よりバンドギャップが広い SiC や GaN や、新しいワイドギャップ半導体であるダイヤモンドや酸化ガリウムを用いた高効率パワーデバイスの実用化に繋げ、エネルギー問題を根本的に解決することが最大の目標である。しかしながら、半導体結晶を用いて作製される電子デバイス・光デバイスの特性は、その結晶中の格子欠陥の物性に大きく左右される。例えば、線状欠陥である転位は格子歪、欠陥準位、局所反応サイトなどを与え、多くの場合、デバイス特性を悪化させる要因となる。そのため結晶欠陥の観察や評価は、産業応用に向けた重要な課題である。我々はこれまでに X 線トポグラフィー測定によりダイヤモンド単結晶や β -Ga₂O₃ 単結晶の転位や積層欠陥の観察と同定を行ってきた。Diamond に関しては、これまで反射トポによる表面近傍の観察を行い、二次元像として欠陥の観察を行ってきた。しかし、これらの欠陥が実際に電子デバイスに与える影響はわかっていない。そのため、Diamond 半導体の素子特性向上のために、キラー欠陥となるものを理解しておく必要がある。そこで本研究では X 線トポグラフィーにより観察した欠陥が電子デバイスに与える影響について調べた。

3. 実験内容(試料、実験方法、解析方法の説明)

ダイヤモンド単結晶において、結晶内部に存在する欠陥の観察を行った.特に転位に関してはバーガーズベクトルを同定する為、それぞれの基板で様々な回折条件下で測定を行った.

測定試料は HPHT ダイヤモンド単結晶を基板としてマイクロ波プラズマ CVD 法によりホモエピ成長を行った,CVD 結晶である.CVD 層の厚さは約 1mm である.成長後,エピ表面は機械研磨及び仕上げ研磨を行い,平坦化している.また,HPHT 基板は除去し CVD 結晶の自立膜となっている.表面に形成されるエッチピットと対応させるため,観察領域が表面から浅い反射 Bagg 配置で測定を行った.g ベクトルは出来るだけ多くのパターンで測定し,得られたトポグラフ像を比較し,欠陥コントラストの消滅則により,転位のバーガーズベクトルを同定した.

測定条件(X線エネルギー,試料配置など)は測定試料の面方位,観察範囲(表面からの深さ)によって変更するが,ブラッグ条件に当てはめ条件を決定する.

4. 実験結果と考察

得られたトポ像では欠陥として主に転位が観察された. CVD 結晶特有の基板結晶からの貫通転位と思われる. サンプルを裏返して基板のトポ像と比較すると,一部の転位は下地基板の転位を引継いで発生しているが,他の物は下地結晶のトポとは相関がなく,表面の荒れや残渣物などを起点に発生していると考えている. SBD 特性と結晶欠陥を比較し,キラー欠陥となるものを同定した. 結果,一部の転位においてリーク電流が発生していることがわかった. これは,下地基盤の転位を引き継いだものがキラー欠陥となっていると考えている.他の報告等ではCVD結晶において複数の転位が東状に観察されているが,今回の観察でも同じように2~3本の転位が東状に発生している. g·b 消滅則により一部の転位は混合転位であることがわかった.

5. 今後の課題

次世代のパワー半導体として注目される Diamond のシンクロトロン放射光を用いた X 線トポグラフィー観察を行った. SBD 特性と結晶欠陥を比較し、キラー欠陥となるものを同定した. 結果、一部の転位においてリーク電流が発生していることがわかった. しかし、他の転位では素子特性に影響を与えていなかったため、今後はこれらの違いをバーガーズベクトルや転位構造の観点から考察し

ていく. また, ガス下流側の非エピタキシャル成分が多く含まれる領域では素子特性が悪化している傾向があった. 今後, これらの抑制や制御技術に関して考察が必要である.

6. 参考文献

[1] A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, Japanese Journal of Applied Physics, 55 (2016) 1202A2.

- 7. 論文発表・特許(注:本課題に関連するこれまでの代表的な成果)
- [1] M. Kasu, R. Murakami, S. Masuya, K. Harada, and H. Sumiya, Synchrotron X-ray topography of dislocations in high-pressure high-temperature-grown single-crystal diamond with low dislocation density, Applied Physics Express, 7 (2014)125501.
- [2] S. Masuya, K. Hanada, T. Uematsu, T. Moribayashi, H. Sumiya, M. Kasu, Determination of the type of stacking faults in single-crystal high-purity diamond with a low dislocation density of <50cm⁻² by synchrotron X-ray topography, Japanese Journal of Applied Physics **55**, (2016)040303
- [3] S. Masuya, K. Hanada, T. Moribayashi, H. Sumiya, M. Kasu, Determination of partial dislocations of stacking fault in (111) single crystal diamond grown on (111) seed crystal by synchrotron X-ray topography, Journal of Crystal Growth, **468** (2017) 439.
- [4]S. Masuya, K. Hanada, T. Oshima, H. Sumiya, M. Kasu, "Formation of stacking fault and dislocation behavior during the high-temperature annealing of single crystal HPHT diamond", Diamond and Related Materials **75** (2017) 155.
- **8. キーワード**(注: 試料及び実験方法を特定する用語を 2 ~ 3) **Diamond.CVD**, **X**線トポグラフィー
- **9. 研究成果公開について**(注:※2に記載した研究成果の公開について①と②のうち該当しない方を消してください。また、論文(査読付)発表と研究センターへの報告、または研究成果公報への原稿提出時期を記入してください(2018年度実施課題は2020年度末が期限となります)。 長期タイプ課題は、ご利用の最終期の利用報告書にご記入ください。

① 論文(査読付)発表の報告 (報告時期: 2021年 3月)