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Over the last decade, the use of neural networks (NNs) for scientific applications has been
steadily increasing. Consisting of numerous “neurons” stacked into layers, they are able to
distinguish patterns or understand relationships between different quantities after appropriate
training. Extended X-ray Absorption Fine Structure (EXAFS) data contain structural information
in terms of the n-body distribution functions [1]:
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The inversion of this equation is an ill-posed problem and among the various strategies to
obtain a solution, recently NNs have been used [2]. We wanted to investigate whether the same
methodology could be applied to disordered phases and whether it would be possible to obtain
information beyond the pair distribution function.

The critical point of any NN is the dataset used for the training process, that should be
sufficiently large and heterogeneous. For this purpose, we used MD simulations of mono-atomic
nickel in different structural configurations and at various temperature. The temperature was
increased past the melting point to also include liquid configurations. From each configuration, we
calculated the radial distribution function, bond-angle distribution of the nearest neighbors and the
EXAFS signal, using GNXAS suite of programs. The created dataset was then used to optimize
and train a set of deep NN to estimate radial and bond-angle distribution functions from a given
EXAFS signal.

We used the NNs to analyze data of nickel at different temperatures. Obtained results show
that the NNs are able to distinguish between ordered and disordered configurations and are also
able to detect small changes in the local ordering of liquid structure, comparable with previously
published results [3].
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Introduction: X-ray absorption spectroscopy
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n-body distribution represents the probability of finding n atoms in a given configuration.
The more known equation of EXAFS:
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is a single scattering approximation where the shell is approximated by a Gaussian distribution. This is adequate
for some cases, but can lead to ambiguous results and mistakes in presence of distortions or for amorphous
systems.
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Inversion of the EXAFS equation is known to be an ill-posed problem. Recently, Neural Networks (NNs) have
been used to solve this issue for crystals.
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[J. Timoshenko et al., Phys. Rev. Lett. 120, 225502 (2018)]

@ Can we use it also for disordered configurations?

@ Is it possible to obtain more than pair distribution function?

What is a Neural Network?

Nonlinear models for supervised learning, extension of linear and logistic regression.
Basic unit is a “neuron” which takes a vector Neural Netwo‘rk (NN) consists in many neulions stacked
into layers, with the output of one layer acting as the

X = (x1,%, - xq) and output a scalar a;(X).
s " . input for the next.
a; consists in a linear transformation ;
20 = W .z 4 b and an activation function I:"f::'

(non-linear) o;(z).

" linear  nonlinearity
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(this is feed-forward network, but many other
architectures are possible)
Universal approximation theorem: a neural network

with a single hidden layer can approximate any
continuous, multi-input/multi-output function with

arbitrary accuracy.

[P. Mehta et al., Physics Reports 810, 1-124 (2019)]
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During training the weights and bias of the neurons are
adjusted, using backpropagation algorithm.
NN Flowchart:

@ Load and process the data

@ Activation at input layer

@ Feedforward
@ Error at top layer @ Define the model and its architecture
© “Backpropagate” the error @ Choose the optimizer and the cost function
. Train the model
© Calculate gradient of the error respect to the o
parameters @ Evaluate the model performance on unseen test

data

@ Modify the hyperparameters and architecture to

Additional practices are commonly used to avoid typical N
optimize performance for the specific problem

pitfalls in using NNs (early stopping, dropout, batch
normalization).

Constructing the dataset for training

We use Molecular Dynamics (MD) simulations through LAMMPS for creating various structures at different
temperatures using Modified Embedded-Atom Method potential. For each configuration we calculate radial
distribution function (RDF), bond angle distribution of nearest neighbors and EXAFS signal.

Created configurations (fcc, hep, bec,
diamond and liquids) using NVT ensemble
of Ni mono-atomic system.

Atoms: ~1000 (for crystals),

4000 (for liquids)
Temperature: 60 - 1500 K
1500 - 2000 K (AT = 20K)
Volume variation: Aa = 0.02 A (410 times)

Facial Dstria. thr Furctan

n(r) = (1 617 — | — ) = 4nr’pg(r)
i

MD configurations are only used to establish the relationship between structure and EXAFS signal, so it's not

required that they represent real configurations.
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EXAFS calculation

NN Architecture

EXAFS signal is calculated averaged over all atoms in the configuration (ensemble average) considering 2-body
and 3-body terms using GNXAS.

(x(k)) = <Z 7(2)(0. i)+ Z 7(3)(0, i,j)> over all atoms
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This way NN becomes independent of this parameter.

Python3.6 (TensorFlow, Keras)
Optimized by grid search
4 dense layers (1000 neurons, Activation: ReLU) and 2 output layers (RDF and N(6) )

» dense: Tleras

Tputlayer

-| denae_|:Dense | w dense_2: Denss | —| demac_1: Tieria

Optimizer = Adam (stochastic gradient descent, learning rate = 1.0E-4)
Cost function = Mean Squared Error of RDF and N(0)

e : —
|

20% of the dataset (chosen randomly) was — s
used as test set, the rest was divided into 5

equal parts: 1 part was used as validation

set to implement early stopping and the

other 4 as training set. The part used as E
validation set was rotated and each time a

new NN was trained, for a total of 5.

Predictions are then averaged and the

standard deviation used as error.
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Test Dataset
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Performance of the trained NN on the test dataset. On the top left, the Mean Square Error (MSE) of the worst
200 cases are shown in descending order. Predicted RDF and BAD (insets) from selected configurations are
shown in blue and the shadowed area represent standard deviation of the predictions. Orange lines are the same
quantities calculated from the models, which are: (a) dia, (b) hep, (c) fec, (d) liquid and (e) bec.

lesari F.(Aicl NN-EXAFS

Neighboring elements

Due to the fact that scattering properties are similar for neighboring atoms in the periodic table, NN can be
used also used to analyze spectra of surrounding elements.
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Experimental Ni at RT
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Cu at low temperatures

Liquid and Undercooled Ni
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Radial distribution function

Comparison of NNs prediction and RMC analysis on the same data and MD simulations
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Conclusions

@ Can we use it also for disordered systems?

We could obtain RDF and BDA for liquid structures
NNs have been able to distinguish small differences between liquid and undercooled phase

@ Is it possible to obtain more than pair distribution function?

Correctly obtained bond angle distributions of various structure at different temperatures

Reconstruction may be challenging when 3-body EXAFS signal becomes small
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After melting, small metal particles can remain in the liquid phase for temperature below the melting point.
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Bond-angle distribution

Amplitude of EXAFS signal as a function of
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